CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2024-12-01 Epub Date: 2024-10-31 DOI:10.1214/24-aoas1904
Nathan B Wikle, Corwin M Zigler
{"title":"CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE.","authors":"Nathan B Wikle, Corwin M Zigler","doi":"10.1214/24-aoas1904","DOIUrl":null,"url":null,"abstract":"<p><p>Causal inference with spatial environmental data is often challenging due to the presence of interference: outcomes for observational units depend on some combination of local and nonlocal treatment. This is especially relevant when estimating the effect of power plant emissions controls on population health, as pollution exposure is dictated by: (i) the location of point-source emissions as well as (ii) the transport of pollutants across space via dynamic physical-chemical processes. In this work we estimate the effectiveness of air quality interventions at coal-fired power plants in reducing two adverse health outcomes in Texas in 2016: pediatric asthma ED visits and Medicare all-cause mortality. We develop methods for causal inference with interference when the underlying network structure is not known with certainty and instead must be estimated from ancillary data. Notably, uncertainty in the interference structure is propagated to the resulting causal effect estimates. We offer a Bayesian, spatial mechanistic model for the interference mapping, which we combine with a flexible nonparametric outcome model to marginalize estimates of causal effects over uncertainty in the structure of interference. our analysis finds some evidence that emissions controls at upwind power plants reduce asthma ED visits and all-cause mortality; however, accounting for uncertainty in the interference renders the results largely inconclusive.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 4","pages":"2753-2774"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-aoas1904","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Causal inference with spatial environmental data is often challenging due to the presence of interference: outcomes for observational units depend on some combination of local and nonlocal treatment. This is especially relevant when estimating the effect of power plant emissions controls on population health, as pollution exposure is dictated by: (i) the location of point-source emissions as well as (ii) the transport of pollutants across space via dynamic physical-chemical processes. In this work we estimate the effectiveness of air quality interventions at coal-fired power plants in reducing two adverse health outcomes in Texas in 2016: pediatric asthma ED visits and Medicare all-cause mortality. We develop methods for causal inference with interference when the underlying network structure is not known with certainty and instead must be estimated from ancillary data. Notably, uncertainty in the interference structure is propagated to the resulting causal effect estimates. We offer a Bayesian, spatial mechanistic model for the interference mapping, which we combine with a flexible nonparametric outcome model to marginalize estimates of causal effects over uncertainty in the structure of interference. our analysis finds some evidence that emissions controls at upwind power plants reduce asthma ED visits and all-cause mortality; however, accounting for uncertainty in the interference renders the results largely inconclusive.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟和不确定物理过程干扰下电厂排放控制的因果健康影响。
由于存在干扰,空间环境数据的因果推断往往具有挑战性:观测单位的结果取决于局部和非局部处理的某种组合。在估计发电厂排放控制对人口健康的影响时,这一点尤其重要,因为污染暴露取决于:(一)点源排放的地点以及(二)污染物通过动态物理化学过程在空间上的转移。在这项工作中,我们估计了2016年德克萨斯州燃煤电厂空气质量干预措施在减少两种不良健康结果方面的有效性:儿科哮喘急诊就诊和医疗保险全因死亡率。当底层网络结构不确定且必须从辅助数据中估计时,我们开发了具有干扰的因果推理方法。值得注意的是,干涉结构中的不确定性被传播到由此产生的因果效应估计中。我们为干扰映射提供了一个贝叶斯空间机制模型,我们将其与一个灵活的非参数结果模型相结合,以边缘化干扰结构中不确定性的因果效应估计。我们的分析发现,一些证据表明,对逆风发电厂的排放控制可以减少哮喘急诊就诊和全因死亡率;然而,考虑到干扰的不确定性,结果基本上是不确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE. PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1