Nan Yan, Jingjing Li, Tengying Ma, Xuejie Liu*, Yanqiu Du, Fan Wu* and Yutian Zhu*,
{"title":"Self-Organization of Polymer-Tethered Gold Nanoparticles into Hybrid Polyhedral Clusters Confined in Soft Emulsion Droplets","authors":"Nan Yan, Jingjing Li, Tengying Ma, Xuejie Liu*, Yanqiu Du, Fan Wu* and Yutian Zhu*, ","doi":"10.1021/acsmaterialslett.4c0187010.1021/acsmaterialslett.4c01870","DOIUrl":null,"url":null,"abstract":"<p >Polymer/inorganic polyhedral clusters organized from polymer-tethered inorganic building blocks have received remarkable attention due to their intriguing crystalline frameworks and functionalities. However, the design of polyhedral clusters remains an enormous challenge, and the sizes are normally restricted to the nanometer scale. Here, we report perfect and large polymer/inorganic hybrid Mackay icosahedral clusters up to the micrometer scale by crystallization of polystyrene-tethered gold inorganic nanoparticles (AuNPs@PS) in soft emulsion droplets. A softness parameter is proposed to evaluate the effect of the softness degree on the shape of the final clusters, which can be utilized to control the framework of supraparticles. Interestingly, a variety of Platonic and Johnson polyhedral clusters with tunable symmetries and configurations have been constructed through manipulating the confinement degree and number of AuNPs@PS building blocks in the confined geometry. The polyhedral clusters in our work open up a universal yet efficient strategy for the bottom-up construction of hybrid polyhedral functional materials.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01870","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer/inorganic polyhedral clusters organized from polymer-tethered inorganic building blocks have received remarkable attention due to their intriguing crystalline frameworks and functionalities. However, the design of polyhedral clusters remains an enormous challenge, and the sizes are normally restricted to the nanometer scale. Here, we report perfect and large polymer/inorganic hybrid Mackay icosahedral clusters up to the micrometer scale by crystallization of polystyrene-tethered gold inorganic nanoparticles (AuNPs@PS) in soft emulsion droplets. A softness parameter is proposed to evaluate the effect of the softness degree on the shape of the final clusters, which can be utilized to control the framework of supraparticles. Interestingly, a variety of Platonic and Johnson polyhedral clusters with tunable symmetries and configurations have been constructed through manipulating the confinement degree and number of AuNPs@PS building blocks in the confined geometry. The polyhedral clusters in our work open up a universal yet efficient strategy for the bottom-up construction of hybrid polyhedral functional materials.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.