Tong Zhang, Shubin Li, Lei Chen, Weiwen Zhang* and Tao Sun*,
{"title":"Extended Toolboxes Enable Efficient Biosynthesis of Multiple Products from CO2 in Fast-Growing Synechococcus sp. PCC 11901","authors":"Tong Zhang, Shubin Li, Lei Chen, Weiwen Zhang* and Tao Sun*, ","doi":"10.1021/acssuschemeng.4c0449710.1021/acssuschemeng.4c04497","DOIUrl":null,"url":null,"abstract":"<p >Cyanobacteria are known to be photoautotrophic cell factories capable of converting CO<sub>2</sub> into valuable chemicals. The newly discovered marine cyanobacterium <i>Synechococcus</i> sp. PCC 11901 (hereafter PCC 11901) offers several advantages like rapid growth, high biomass, and high salinity tolerance, representing a promising chassis. To promote its application, we developed genetic toolboxes applicable to PCC 11901 in this study. First, a cobalamin (V<sub>B12</sub>)-independent chassis was constructed, allowing for cheaper cultivation. Second, genome copy numbers and transformation methods were, respectively, measured and optimized. Then, 14 neutral sites were identified and characterized within the genome PCC 11901, providing locations for genetic integration of exogenous cassettes. Subsequently, promoter libraries were developed, reaching an expression range of approximately 800 folds for constitutive promoters and an induction fold of up to approximately 400 for inducible promotors, respectively. As a proof of concept, natural production of the total lipid and phycocyanin was investigated using V<sub>B12</sub>-independent chassis, which realized an increase of 14.91% with lipid content compared with that of the wild-type strain. Further, we engineered the synthetic pathways of glucosylglycerol (GG) into PCC 11901 using the established toolboxes, reaching 590.41 ± 21.48 mg/L for GG production and self-sedimentation in photoreactors with the highest OD<sub>750 nm</sub> at 17.57 ± 0.77. Finally, the GG-producing strain grew well in seawater, reaching 324.50 ± 5.34 mg/L in shaking flask, which provided new strategies for cyanobacteria cultivation and production. Our work here made it possible to develop the fast-growing PCC 11901 as efficient carbon-neutral cell factory in the future.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"12 44","pages":"16186–16201 16186–16201"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c04497","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacteria are known to be photoautotrophic cell factories capable of converting CO2 into valuable chemicals. The newly discovered marine cyanobacterium Synechococcus sp. PCC 11901 (hereafter PCC 11901) offers several advantages like rapid growth, high biomass, and high salinity tolerance, representing a promising chassis. To promote its application, we developed genetic toolboxes applicable to PCC 11901 in this study. First, a cobalamin (VB12)-independent chassis was constructed, allowing for cheaper cultivation. Second, genome copy numbers and transformation methods were, respectively, measured and optimized. Then, 14 neutral sites were identified and characterized within the genome PCC 11901, providing locations for genetic integration of exogenous cassettes. Subsequently, promoter libraries were developed, reaching an expression range of approximately 800 folds for constitutive promoters and an induction fold of up to approximately 400 for inducible promotors, respectively. As a proof of concept, natural production of the total lipid and phycocyanin was investigated using VB12-independent chassis, which realized an increase of 14.91% with lipid content compared with that of the wild-type strain. Further, we engineered the synthetic pathways of glucosylglycerol (GG) into PCC 11901 using the established toolboxes, reaching 590.41 ± 21.48 mg/L for GG production and self-sedimentation in photoreactors with the highest OD750 nm at 17.57 ± 0.77. Finally, the GG-producing strain grew well in seawater, reaching 324.50 ± 5.34 mg/L in shaking flask, which provided new strategies for cyanobacteria cultivation and production. Our work here made it possible to develop the fast-growing PCC 11901 as efficient carbon-neutral cell factory in the future.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.