Fish distribution shifts due to climate change in the Northeast Atlantic: Using a hierarchical filtering approach on marine-estuarine opportunist species
Anaïs Janc , Chloé Dambrine , Patrick Lambert , Géraldine Lassalle , Mario Lepage , Jérémy Lobry , Maud Pierre , Trond Kristiansen , Momme Butenschön , Henrique N. Cabral
{"title":"Fish distribution shifts due to climate change in the Northeast Atlantic: Using a hierarchical filtering approach on marine-estuarine opportunist species","authors":"Anaïs Janc , Chloé Dambrine , Patrick Lambert , Géraldine Lassalle , Mario Lepage , Jérémy Lobry , Maud Pierre , Trond Kristiansen , Momme Butenschön , Henrique N. Cabral","doi":"10.1016/j.ecss.2024.109013","DOIUrl":null,"url":null,"abstract":"<div><div>Marine-estuarine opportunist (MEO) species are fish that occur in the continental shelf and use estuaries and/or shallow coastal areas as nurseries. These commercially important resources are facing significant environmental modifications caused by direct and/or indirect anthropogenic climate change effects. In this study, we investigated the directionality and the magnitude of the distribution shifts (i.e., range size, gravity centroids, and margins) in marine environment suitability for six main MEO fish species within the Northeast Atlantic expected for the end of the 21st century. In the framework of this study, we have distinguished ‘sub-boreal’ from ‘sub-tropical’ species. The ‘hierarchical filters’ concept was adopted for modelling the potential species distributions and combined the predictions of i) a bioclimatic model with ii) a habitat model. The bioclimatic model is based on large-scale and time-variant variables while variables of the habitat model are fine-grained and time-invariant. Two Intergovernmental Panel on Climate Change (IPCC) scenarios are tested: an intermediate (SSP2-4.5) and a pessimistic one (SSP5-8.5). We applied this framework using international databases of biodiversity occurrences, ensemble forecasting producing consensual predictions, and innovative indices of distribution shifts. A visible north-westward shift was predicted for all six species in our study area. However, the northward expansion was greater for ‘sub-tropical’ than for ‘sub-boreal’ species due to faster gravity centroid displacement shifts and faster margins shifts. These range shifts may lead to major ecological impacts (e.g., changes in recruitment to estuarine and coastal nurseries, as well as changes in spawning grounds) that may alter populations' connectivity.</div></div>","PeriodicalId":50497,"journal":{"name":"Estuarine Coastal and Shelf Science","volume":"310 ","pages":"Article 109013"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuarine Coastal and Shelf Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272771424004013","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Marine-estuarine opportunist (MEO) species are fish that occur in the continental shelf and use estuaries and/or shallow coastal areas as nurseries. These commercially important resources are facing significant environmental modifications caused by direct and/or indirect anthropogenic climate change effects. In this study, we investigated the directionality and the magnitude of the distribution shifts (i.e., range size, gravity centroids, and margins) in marine environment suitability for six main MEO fish species within the Northeast Atlantic expected for the end of the 21st century. In the framework of this study, we have distinguished ‘sub-boreal’ from ‘sub-tropical’ species. The ‘hierarchical filters’ concept was adopted for modelling the potential species distributions and combined the predictions of i) a bioclimatic model with ii) a habitat model. The bioclimatic model is based on large-scale and time-variant variables while variables of the habitat model are fine-grained and time-invariant. Two Intergovernmental Panel on Climate Change (IPCC) scenarios are tested: an intermediate (SSP2-4.5) and a pessimistic one (SSP5-8.5). We applied this framework using international databases of biodiversity occurrences, ensemble forecasting producing consensual predictions, and innovative indices of distribution shifts. A visible north-westward shift was predicted for all six species in our study area. However, the northward expansion was greater for ‘sub-tropical’ than for ‘sub-boreal’ species due to faster gravity centroid displacement shifts and faster margins shifts. These range shifts may lead to major ecological impacts (e.g., changes in recruitment to estuarine and coastal nurseries, as well as changes in spawning grounds) that may alter populations' connectivity.
期刊介绍:
Estuarine, Coastal and Shelf Science is an international multidisciplinary journal devoted to the analysis of saline water phenomena ranging from the outer edge of the continental shelf to the upper limits of the tidal zone. The journal provides a unique forum, unifying the multidisciplinary approaches to the study of the oceanography of estuaries, coastal zones, and continental shelf seas. It features original research papers, review papers and short communications treating such disciplines as zoology, botany, geology, sedimentology, physical oceanography.