Electronic modulation towards MOFs as template derived CoP via engineered heteroatom defect for a highly efficient overall water splitting

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-10-22 DOI:10.1016/j.jechem.2024.10.010
{"title":"Electronic modulation towards MOFs as template derived CoP via engineered heteroatom defect for a highly efficient overall water splitting","authors":"","doi":"10.1016/j.jechem.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>The reasonable design of material morphology and eco-friendly electrocatalysts are essential to highly efficient water splitting. It is proposed that a promising strategy effectively regulates the electronic structure of the d‐orbitals of CoP using cerium doping in this paper, thus significantly improving the intrinsic property and conductivity of CoP for water splitting. As a result, the as-synthesize porous Ce-doped CoP micro-polyhedron composite derived from Ce-ZIF-67 as bifunctional electrocatalytic materials exhibits excellent electrocatalytic performance in both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), overpotentials of about 152 mV for HER at 10 mA cm<sup>−2</sup> and about 352 mV for OER at 50 mA cm<sup>−2</sup>, and especially it shows outstanding long-term stability. Besides, an alkaline electrolyzer, using Ce<sub>0.04</sub>Co<sub>0.96</sub>P electrocatalyst as both the anode and cathode, delivers a cell voltage value of 1.55 V at the current density of 10 mA cm<sup>−2</sup>. The calculation results of the density functional theory (DFT) demonstrate that the introduction of an appropriate amount of Ce into CoP can enhance the conductivity, and can induce the electronic modulation to regulate the selective adsorption of reaction intermediates on catalytic surface and the formation of O* intermediates (CoOOH), which exhibits an excellent electrocatalytic performance. This study provides novel insights into the design of an extraordinary performance water-splitting of the multicomponent electrocatalysts.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562400706X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The reasonable design of material morphology and eco-friendly electrocatalysts are essential to highly efficient water splitting. It is proposed that a promising strategy effectively regulates the electronic structure of the d‐orbitals of CoP using cerium doping in this paper, thus significantly improving the intrinsic property and conductivity of CoP for water splitting. As a result, the as-synthesize porous Ce-doped CoP micro-polyhedron composite derived from Ce-ZIF-67 as bifunctional electrocatalytic materials exhibits excellent electrocatalytic performance in both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), overpotentials of about 152 mV for HER at 10 mA cm−2 and about 352 mV for OER at 50 mA cm−2, and especially it shows outstanding long-term stability. Besides, an alkaline electrolyzer, using Ce0.04Co0.96P electrocatalyst as both the anode and cathode, delivers a cell voltage value of 1.55 V at the current density of 10 mA cm−2. The calculation results of the density functional theory (DFT) demonstrate that the introduction of an appropriate amount of Ce into CoP can enhance the conductivity, and can induce the electronic modulation to regulate the selective adsorption of reaction intermediates on catalytic surface and the formation of O* intermediates (CoOOH), which exhibits an excellent electrocatalytic performance. This study provides novel insights into the design of an extraordinary performance water-splitting of the multicomponent electrocatalysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过设计杂原子缺陷对作为模板衍生 CoP 的 MOFs 进行电子调制,实现高效整体水分离
合理的材料形态设计和环保型电催化剂是高效水分离的关键。本文提出了一种可行的策略,即利用铈掺杂有效调节 CoP 的 d 轨道电子结构,从而显著改善 CoP 的本征性能和电导率,以实现水的分离。因此,以 Ce-ZIF-67 为原料合成的多孔掺铈 CoP 微多面体复合材料作为双功能电催化材料,在氧进化反应(OER)和氢进化反应(HER)中均表现出优异的电催化性能,在 10 mA cm-2 的条件下,HER 的过电位约为 152 mV,在 50 mA cm-2 的条件下,OER 的过电位约为 352 mV,尤其是它表现出突出的长期稳定性。此外,使用 Ce0.04Co0.96P 电催化剂作为阳极和阴极的碱性电解槽在 10 mA cm-2 的电流密度下可产生 1.55 V 的电池电压值。密度泛函理论(DFT)的计算结果表明,在 CoP 中引入适量的 Ce 可以提高电导率,并能诱导电子调制调节反应中间产物在催化表面的选择性吸附和 O* 中间产物(CoOOH)的形成,从而表现出优异的电催化性能。这项研究为设计性能优异的多组分电催化剂分水器提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Unraveling the exceptional kinetics of Zn||organic batteries in hydrated deep eutectic solution Electronic modulation towards MOFs as template derived CoP via engineered heteroatom defect for a highly efficient overall water splitting Enhanced dynamics of Al3+/H+ ions in aqueous aluminum ion batteries: Construction of metastable structures in vanadium pentoxide upon oxygen vacancies Upcycling of monomers derived from waste polyester plastics via electrocatalysis Design principles of novel Zn fluorocarboxylate protection layer toward durable dendrite-free Zn metal anodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1