Francesco Ceresa , Mattia Brambilla , Laura Kvist , Severino Vitulano , Michele Pes , Laura Tomasi , Paolo Pedrini , Chiara Bettega , Matteo Anderle , Andreas Hilpold , Petra Kranebitter
{"title":"Wing morphology changes with habitat availability and elevation in an alpine-specialist bird","authors":"Francesco Ceresa , Mattia Brambilla , Laura Kvist , Severino Vitulano , Michele Pes , Laura Tomasi , Paolo Pedrini , Chiara Bettega , Matteo Anderle , Andreas Hilpold , Petra Kranebitter","doi":"10.1016/j.gecco.2024.e03276","DOIUrl":null,"url":null,"abstract":"<div><div>Intraspecific morphological variation of organisms is known to be influenced by several factors, but the role of habitat availability has been scarcely investigated. Studying bird wing morphology is ideal to explore this topic, given the usually rapid response of birds to environmental changes, but other factors such as sexual dimorphism, habitat structure, climate and elevation need to be considered. Here, we investigated the effects of habitat availability, local climate and elevation on the wing morphology of a high-elevation specialist bird (<em>Montifringilla nivalis</em>), while accounting for sexual dimorphism. We hypothesized that birds relying on less extended suitable areas around their breeding sites show wing traits allowing a more energy-efficient flight, given their need of more frequent and longer movements to find foraging areas in the post-breeding period and the longer dispersal distances. We also expected that individuals breeding at higher elevations show wings traits allowing higher flight efficiency, given the higher hypoxia risk. We derived wing traits (isometric size, pointedness and concavity) by measuring primary feathers of individuals from 7 breeding sites in the European Alps, and we obtained habitat availability from detailed habitat suitability maps. Consistently with the need for a more energy-efficient flight, birds relying on less extended suitable habitat showed larger and more concave wings, and individuals breeding at higher elevations showed more concave wings. Local climate had a less clear effect. The observed patterns may result from local adaptations and could represent one of the ways mountain birds cope with the harsh and unpredictable environment they inhabit.</div></div>","PeriodicalId":54264,"journal":{"name":"Global Ecology and Conservation","volume":"56 ","pages":"Article e03276"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2351989424004803","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Intraspecific morphological variation of organisms is known to be influenced by several factors, but the role of habitat availability has been scarcely investigated. Studying bird wing morphology is ideal to explore this topic, given the usually rapid response of birds to environmental changes, but other factors such as sexual dimorphism, habitat structure, climate and elevation need to be considered. Here, we investigated the effects of habitat availability, local climate and elevation on the wing morphology of a high-elevation specialist bird (Montifringilla nivalis), while accounting for sexual dimorphism. We hypothesized that birds relying on less extended suitable areas around their breeding sites show wing traits allowing a more energy-efficient flight, given their need of more frequent and longer movements to find foraging areas in the post-breeding period and the longer dispersal distances. We also expected that individuals breeding at higher elevations show wings traits allowing higher flight efficiency, given the higher hypoxia risk. We derived wing traits (isometric size, pointedness and concavity) by measuring primary feathers of individuals from 7 breeding sites in the European Alps, and we obtained habitat availability from detailed habitat suitability maps. Consistently with the need for a more energy-efficient flight, birds relying on less extended suitable habitat showed larger and more concave wings, and individuals breeding at higher elevations showed more concave wings. Local climate had a less clear effect. The observed patterns may result from local adaptations and could represent one of the ways mountain birds cope with the harsh and unpredictable environment they inhabit.
期刊介绍:
Global Ecology and Conservation is a peer-reviewed, open-access journal covering all sub-disciplines of ecological and conservation science: from theory to practice, from molecules to ecosystems, from regional to global. The fields covered include: organismal, population, community, and ecosystem ecology; physiological, evolutionary, and behavioral ecology; and conservation science.