Crystalline structure and dielectric relaxor behavior of MnO2-modified 0.8BaTiO3-0.2BiScO3 ceramics for energy storage application

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-11-02 DOI:10.1016/j.matchemphys.2024.130119
{"title":"Crystalline structure and dielectric relaxor behavior of MnO2-modified 0.8BaTiO3-0.2BiScO3 ceramics for energy storage application","authors":"","doi":"10.1016/j.matchemphys.2024.130119","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the synergistic roles of defect dipoles and MnO<sub>2</sub> sintering aid, 0.8BaTiO<sub>3</sub>-0.2BiScO<sub>3</sub> (BTBS<sub>0.2</sub>) ceramics with and without 0.3 wt% MnO<sub>2</sub> were prepared by a solid-phase reaction route. The impacts of MnO<sub>2</sub> dopant and sintering conditions on the crystalline structure, micro-morphology, dielectric, and energy storage properties were investigated in detail. The X-ray diffraction (XRD) and Raman results demonstrate the coexistence of tetragonal (T) and pseudo-cubic (pC) phases. The increased pC phase content caused by MnO<sub>2</sub> modification is beneficial for the improvement of the relaxation degree. The O 1s fine spectra of X-ray photoelectron spectroscopy (XPS) confirms a remarkable increase in the concentration of oxygen vacancy due to the acceptor Mn dopant, indicating the valence changes of Mn ions from Mn<sup>4+</sup> to Mn<sup>3+</sup>/Mn<sup>2+</sup>. The reduced dielectric loss is induced by the improved density and the pinning effect from the defect dipoles, thereby yielding a higher <em>E</em><sub>b</sub>. An optimal energy density of <em>W</em><sub>rec</sub> = 0.70 J/cm<sup>3</sup> with a high energy efficiency of <em>η</em> = 95.8 % at 140 kV/cm was realized in the BTBS<sub>0.2</sub>+Mn ceramic composition sintered at 1300 °C. Moreover, the ceramic also exhibits good temperature stability (30–120 °C). Therefore, the BTBS<sub>0.2</sub>+Mn ceramics have a promising application prospect in the energy storage field.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012471","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the synergistic roles of defect dipoles and MnO2 sintering aid, 0.8BaTiO3-0.2BiScO3 (BTBS0.2) ceramics with and without 0.3 wt% MnO2 were prepared by a solid-phase reaction route. The impacts of MnO2 dopant and sintering conditions on the crystalline structure, micro-morphology, dielectric, and energy storage properties were investigated in detail. The X-ray diffraction (XRD) and Raman results demonstrate the coexistence of tetragonal (T) and pseudo-cubic (pC) phases. The increased pC phase content caused by MnO2 modification is beneficial for the improvement of the relaxation degree. The O 1s fine spectra of X-ray photoelectron spectroscopy (XPS) confirms a remarkable increase in the concentration of oxygen vacancy due to the acceptor Mn dopant, indicating the valence changes of Mn ions from Mn4+ to Mn3+/Mn2+. The reduced dielectric loss is induced by the improved density and the pinning effect from the defect dipoles, thereby yielding a higher Eb. An optimal energy density of Wrec = 0.70 J/cm3 with a high energy efficiency of η = 95.8 % at 140 kV/cm was realized in the BTBS0.2+Mn ceramic composition sintered at 1300 °C. Moreover, the ceramic also exhibits good temperature stability (30–120 °C). Therefore, the BTBS0.2+Mn ceramics have a promising application prospect in the energy storage field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于储能应用的 MnO2 改性 0.8BaTiO3-0.2BiScO3 陶瓷的晶体结构和介电弛豫行为
基于缺陷偶极子和 MnO2 烧结助剂的协同作用,通过固相反应路线制备了含 0.3 wt% MnO2 和不含 0.3 wt% MnO2 的 0.8BaTiO3-0.2BiScO3 (BTBS0.2) 陶瓷。详细研究了 MnO2 掺杂和烧结条件对晶体结构、微观形态、介电和储能性能的影响。X 射线衍射(XRD)和拉曼结果表明,四方(T)相和假立方(pC)相共存。MnO2 改性导致的 pC 相含量增加有利于提高弛豫度。X 射线光电子能谱 (XPS) 的 O 1s 细光谱证实,由于掺杂了受体锰,氧空位的浓度显著增加,表明锰离子的价态从 Mn4+ 变为 Mn3+/Mn2+。介电损耗的降低是由于密度的提高和缺陷偶极子的引脚效应,从而产生了更高的 Eb。在 1300 ℃ 下烧结的 BTBS0.2+Mn 陶瓷成分实现了最佳能量密度 Wrec = 0.70 J/cm3,在 140 kV/cm 下能量效率高达 η = 95.8%。此外,该陶瓷还具有良好的温度稳定性(30-120 °C)。因此,BTBS0.2+Mn 陶瓷在储能领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Crystalline structure and dielectric relaxor behavior of MnO2-modified 0.8BaTiO3-0.2BiScO3 ceramics for energy storage application Enhancing microstructure, nanomechanical and tribological properties of TiAl alloy processed by spark plasma sintering with Si3N4 ceramic particulates addition Highly sensitive electrochemical sensor based Nd2O3/graphene for monitoring additive compounds in palm oil product Mixed-dimensional nanofluids: Synergistic thermal enhancement using 2D and 1D materials CO2 reforming of methane over Ni-Al-LDH catalysts prepared with different precipitants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1