{"title":"Crystalline structure and dielectric relaxor behavior of MnO2-modified 0.8BaTiO3-0.2BiScO3 ceramics for energy storage application","authors":"","doi":"10.1016/j.matchemphys.2024.130119","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the synergistic roles of defect dipoles and MnO<sub>2</sub> sintering aid, 0.8BaTiO<sub>3</sub>-0.2BiScO<sub>3</sub> (BTBS<sub>0.2</sub>) ceramics with and without 0.3 wt% MnO<sub>2</sub> were prepared by a solid-phase reaction route. The impacts of MnO<sub>2</sub> dopant and sintering conditions on the crystalline structure, micro-morphology, dielectric, and energy storage properties were investigated in detail. The X-ray diffraction (XRD) and Raman results demonstrate the coexistence of tetragonal (T) and pseudo-cubic (pC) phases. The increased pC phase content caused by MnO<sub>2</sub> modification is beneficial for the improvement of the relaxation degree. The O 1s fine spectra of X-ray photoelectron spectroscopy (XPS) confirms a remarkable increase in the concentration of oxygen vacancy due to the acceptor Mn dopant, indicating the valence changes of Mn ions from Mn<sup>4+</sup> to Mn<sup>3+</sup>/Mn<sup>2+</sup>. The reduced dielectric loss is induced by the improved density and the pinning effect from the defect dipoles, thereby yielding a higher <em>E</em><sub>b</sub>. An optimal energy density of <em>W</em><sub>rec</sub> = 0.70 J/cm<sup>3</sup> with a high energy efficiency of <em>η</em> = 95.8 % at 140 kV/cm was realized in the BTBS<sub>0.2</sub>+Mn ceramic composition sintered at 1300 °C. Moreover, the ceramic also exhibits good temperature stability (30–120 °C). Therefore, the BTBS<sub>0.2</sub>+Mn ceramics have a promising application prospect in the energy storage field.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012471","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the synergistic roles of defect dipoles and MnO2 sintering aid, 0.8BaTiO3-0.2BiScO3 (BTBS0.2) ceramics with and without 0.3 wt% MnO2 were prepared by a solid-phase reaction route. The impacts of MnO2 dopant and sintering conditions on the crystalline structure, micro-morphology, dielectric, and energy storage properties were investigated in detail. The X-ray diffraction (XRD) and Raman results demonstrate the coexistence of tetragonal (T) and pseudo-cubic (pC) phases. The increased pC phase content caused by MnO2 modification is beneficial for the improvement of the relaxation degree. The O 1s fine spectra of X-ray photoelectron spectroscopy (XPS) confirms a remarkable increase in the concentration of oxygen vacancy due to the acceptor Mn dopant, indicating the valence changes of Mn ions from Mn4+ to Mn3+/Mn2+. The reduced dielectric loss is induced by the improved density and the pinning effect from the defect dipoles, thereby yielding a higher Eb. An optimal energy density of Wrec = 0.70 J/cm3 with a high energy efficiency of η = 95.8 % at 140 kV/cm was realized in the BTBS0.2+Mn ceramic composition sintered at 1300 °C. Moreover, the ceramic also exhibits good temperature stability (30–120 °C). Therefore, the BTBS0.2+Mn ceramics have a promising application prospect in the energy storage field.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.