{"title":"EQID: Entangled quantum image descriptor an approach for early plant disease detection","authors":"Ishana Attri, Lalit Kumar Awasthi (Prof) , Teek Parval Sharma","doi":"10.1016/j.cropro.2024.107005","DOIUrl":null,"url":null,"abstract":"<div><div>In present day agriculture, early and accurate identification of plant diseases is essential for prompt response, which protects crop quality and output. This paper presents the Entangled Quantum-Inspired Deep learning model (EQID), a unique method that improves feature representation and classification in plant disease prediction by utilizing the concepts of quantum computing. Two different datasets with images of potatoes and tomatoes as leaves were used to test the EQID model, which performed better than traditional models. EQID obtained 98.96% accuracy, 98.98% precision, 98.96% recall, and 98.90% F1 score on images of potato leaves. For tomato leaves, comparable outcomes were noted, with accuracy, precision, recall, and F1 score all above 99.61%. The accuracy of disease prediction is greatly increased by the efficient and effective feature representation made possible by the EQID model's inclusion of quantum computing techniques. Additionally, the model outperformed other cutting-edge models such as DenseNet-121, VGGNet 16, and Xception Net, illustrating the potentially revolutionary effects of quantum-inspired models in agriculture. Future work will focus on applying the EQID model to a broader range of crops and plant diseases, as well as incorporating additional data sources to further enhance the model's predictive capabilities.</div></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":"188 ","pages":"Article 107005"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0261219424004332","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
In present day agriculture, early and accurate identification of plant diseases is essential for prompt response, which protects crop quality and output. This paper presents the Entangled Quantum-Inspired Deep learning model (EQID), a unique method that improves feature representation and classification in plant disease prediction by utilizing the concepts of quantum computing. Two different datasets with images of potatoes and tomatoes as leaves were used to test the EQID model, which performed better than traditional models. EQID obtained 98.96% accuracy, 98.98% precision, 98.96% recall, and 98.90% F1 score on images of potato leaves. For tomato leaves, comparable outcomes were noted, with accuracy, precision, recall, and F1 score all above 99.61%. The accuracy of disease prediction is greatly increased by the efficient and effective feature representation made possible by the EQID model's inclusion of quantum computing techniques. Additionally, the model outperformed other cutting-edge models such as DenseNet-121, VGGNet 16, and Xception Net, illustrating the potentially revolutionary effects of quantum-inspired models in agriculture. Future work will focus on applying the EQID model to a broader range of crops and plant diseases, as well as incorporating additional data sources to further enhance the model's predictive capabilities.
期刊介绍:
The Editors of Crop Protection especially welcome papers describing an interdisciplinary approach showing how different control strategies can be integrated into practical pest management programs, covering high and low input agricultural systems worldwide. Crop Protection particularly emphasizes the practical aspects of control in the field and for protected crops, and includes work which may lead in the near future to more effective control. The journal does not duplicate the many existing excellent biological science journals, which deal mainly with the more fundamental aspects of plant pathology, applied zoology and weed science. Crop Protection covers all practical aspects of pest, disease and weed control, including the following topics:
-Abiotic damage-
Agronomic control methods-
Assessment of pest and disease damage-
Molecular methods for the detection and assessment of pests and diseases-
Biological control-
Biorational pesticides-
Control of animal pests of world crops-
Control of diseases of crop plants caused by microorganisms-
Control of weeds and integrated management-
Economic considerations-
Effects of plant growth regulators-
Environmental benefits of reduced pesticide use-
Environmental effects of pesticides-
Epidemiology of pests and diseases in relation to control-
GM Crops, and genetic engineering applications-
Importance and control of postharvest crop losses-
Integrated control-
Interrelationships and compatibility among different control strategies-
Invasive species as they relate to implications for crop protection-
Pesticide application methods-
Pest management-
Phytobiomes for pest and disease control-
Resistance management-
Sampling and monitoring schemes for diseases, nematodes, pests and weeds.