Jaime Gonzalez-Cabrera , Rosa Elia García-García , Jorge Luis Vega-Chavez , Yadira Contreras-Bermudez , Nallely Mejía-García , Erika Ángeles-Chavez , Jorge Antonio Sanchez-Gonzalez
{"title":"Biological and population parameters of Telenomus remus and Trichogramma atopovirilia as biological control agents for Spodoptera frugiperda","authors":"Jaime Gonzalez-Cabrera , Rosa Elia García-García , Jorge Luis Vega-Chavez , Yadira Contreras-Bermudez , Nallely Mejía-García , Erika Ángeles-Chavez , Jorge Antonio Sanchez-Gonzalez","doi":"10.1016/j.cropro.2024.106995","DOIUrl":null,"url":null,"abstract":"<div><div>Maize production faces a significant threat from <em>Spodoptera frugiperda</em> (J. E. Smith) worldwide; historically, <em>Trichogramma pretiosum</em> Riley has served as the primary augmentative egg parasitoid for its biological control. However, since 2004, <em>Telenomus remus</em> Nixon has emerged as a viable global alternative. On a regional scale, in Mexico, <em>Trichogramma atopovirilia</em> (Oatman & Platner) was theorized to outperform <em>T. pretiosum</em>, proving superior in both laboratory and field conditions in 2020. To further the field efficacy of the augmentative use of parasitoids as biological agents of <em>S. frugiperda</em>, we conducted comparisons of biological and population parameters under laboratory-controlled conditions to determine whether <em>T. remus</em> would be more effective than <em>T. atopovirilia</em>, the best <em>Trichogramma</em> parasitoid in Mexico for <em>S. frugiperda</em>. We found that the former parasitoid had statistically significant longer female and male longevity, as well as a higher proportion of female offspring, and greater numerical values in net reproduction rate, intrinsic rate of increase, and finite rate of increase, but no differences were found in the number of days required for both parasitoids to develop from egg to female or egg to male, as well as in the mean generation time and doubling time. Under the conditions of these trials, <em>T. remus</em> had a 47.02% greater intrinsic rate of increase (r<sub>m</sub>) and may thus be a more effective biological control agent for <em>S. frugiperda</em> than <em>T. atopovirilia</em>. However, these biological and population parameter comparisons are the first execution worldwide; further studies are needed to validate these promising <em>T. remus</em> results.</div></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":"188 ","pages":"Article 106995"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026121942400423X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Maize production faces a significant threat from Spodoptera frugiperda (J. E. Smith) worldwide; historically, Trichogramma pretiosum Riley has served as the primary augmentative egg parasitoid for its biological control. However, since 2004, Telenomus remus Nixon has emerged as a viable global alternative. On a regional scale, in Mexico, Trichogramma atopovirilia (Oatman & Platner) was theorized to outperform T. pretiosum, proving superior in both laboratory and field conditions in 2020. To further the field efficacy of the augmentative use of parasitoids as biological agents of S. frugiperda, we conducted comparisons of biological and population parameters under laboratory-controlled conditions to determine whether T. remus would be more effective than T. atopovirilia, the best Trichogramma parasitoid in Mexico for S. frugiperda. We found that the former parasitoid had statistically significant longer female and male longevity, as well as a higher proportion of female offspring, and greater numerical values in net reproduction rate, intrinsic rate of increase, and finite rate of increase, but no differences were found in the number of days required for both parasitoids to develop from egg to female or egg to male, as well as in the mean generation time and doubling time. Under the conditions of these trials, T. remus had a 47.02% greater intrinsic rate of increase (rm) and may thus be a more effective biological control agent for S. frugiperda than T. atopovirilia. However, these biological and population parameter comparisons are the first execution worldwide; further studies are needed to validate these promising T. remus results.
期刊介绍:
The Editors of Crop Protection especially welcome papers describing an interdisciplinary approach showing how different control strategies can be integrated into practical pest management programs, covering high and low input agricultural systems worldwide. Crop Protection particularly emphasizes the practical aspects of control in the field and for protected crops, and includes work which may lead in the near future to more effective control. The journal does not duplicate the many existing excellent biological science journals, which deal mainly with the more fundamental aspects of plant pathology, applied zoology and weed science. Crop Protection covers all practical aspects of pest, disease and weed control, including the following topics:
-Abiotic damage-
Agronomic control methods-
Assessment of pest and disease damage-
Molecular methods for the detection and assessment of pests and diseases-
Biological control-
Biorational pesticides-
Control of animal pests of world crops-
Control of diseases of crop plants caused by microorganisms-
Control of weeds and integrated management-
Economic considerations-
Effects of plant growth regulators-
Environmental benefits of reduced pesticide use-
Environmental effects of pesticides-
Epidemiology of pests and diseases in relation to control-
GM Crops, and genetic engineering applications-
Importance and control of postharvest crop losses-
Integrated control-
Interrelationships and compatibility among different control strategies-
Invasive species as they relate to implications for crop protection-
Pesticide application methods-
Pest management-
Phytobiomes for pest and disease control-
Resistance management-
Sampling and monitoring schemes for diseases, nematodes, pests and weeds.