V. Rama Krishna , Vuppala Sukanya , Mohd Abdul Hameed
{"title":"Optimizing Wireless Sensor Network longevity with hierarchical chain-based routing and vertical network partitioning techniques","authors":"V. Rama Krishna , Vuppala Sukanya , Mohd Abdul Hameed","doi":"10.1016/j.measen.2024.101390","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient utilization of energy is a crucial concern in Wireless Sensor Networks (WSNs) to increase the network's longevity. However, it is impossible to investigate routing without considering the effective formation of chains or clustering methods to optimize the problem in WSNs. The proposed routing technique aims to extend the lifespan of sensors using various network partitioning techniques. The approach utilized in the strategy is PEGASIS (<strong>P</strong>ower <strong>E</strong>fficient<strong>Ga</strong>thering in <strong>S</strong>ensor <strong>I</strong>nformation <strong>S</strong>ystems) protocol, it uses Prim's Algorithm to modify the chain structure and is based on hierarchical chain-based routing. In order to transmit information from the working nodes to the base station (BS), we employ and vertical network partitioning techniques named EEPEG-PA-V. According to this approach, the transition is carried out when the node's residual energy is about to run out. The suggested method has the potential to enhance the average network longevity substantially when compared to existing routing techniques. For instance, EEPEG-PA improves it by 21.7092 % and EEPEG-PA-V by 29.9056 % compared to PEGASIS. Similarly, EEPEG-PA-V by 6.1708 % compared to EEPEG-PAacross various network sizes.</div></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"36 ","pages":"Article 101390"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424003660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient utilization of energy is a crucial concern in Wireless Sensor Networks (WSNs) to increase the network's longevity. However, it is impossible to investigate routing without considering the effective formation of chains or clustering methods to optimize the problem in WSNs. The proposed routing technique aims to extend the lifespan of sensors using various network partitioning techniques. The approach utilized in the strategy is PEGASIS (Power EfficientGathering in Sensor Information Systems) protocol, it uses Prim's Algorithm to modify the chain structure and is based on hierarchical chain-based routing. In order to transmit information from the working nodes to the base station (BS), we employ and vertical network partitioning techniques named EEPEG-PA-V. According to this approach, the transition is carried out when the node's residual energy is about to run out. The suggested method has the potential to enhance the average network longevity substantially when compared to existing routing techniques. For instance, EEPEG-PA improves it by 21.7092 % and EEPEG-PA-V by 29.9056 % compared to PEGASIS. Similarly, EEPEG-PA-V by 6.1708 % compared to EEPEG-PAacross various network sizes.