{"title":"Establishing requirements for lunar and cislunar orbital debris tracking","authors":"Brad F. Barakat, Michael T. Kezirian","doi":"10.1016/j.jsse.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>There is a need to formally coordinate lunar and cislunar space traffic management to mitigate the risk of collisions with micrometeoroids and orbital debris in this space domain. To control this hazard, it will be critical to develop a high-fidelity orbital debris catalog. This catalog will be maintained by monitoring and propagating the trajectory of objects. The need to perform a debris avoidance maneuver for collision avoidance will depend on the fidelity of the propagated debris trajectory. A larger uncertainty (magnitude as a function of time) will require a larger maneuver and a higher likelihood of the need to perform this maneuver. This study assesses debris avoidance maneuvers and corresponding corrective actions to recover the desired mission trajectory as a way to evaluate the desired capability of tracking of objects in lunar and cislunar orbit. The baseline Earth-to-Moon trajectory was that of the Artemis I mission. Typical conjunction assessments were postulated at 100,000 km from Earth's center (approximately a quarter of the way to the moon) and at lunar orbit insertion (LOI). For these two cases, the required debris avoidance maneuver (and hence impact to the mission) is tied to the uncertainty in orbital debris tracking. The study provides a methodology and baseline inputs to establish future requirements of debris tracking in lunar and cislunar orbits. It also reinforces the importance of long-term sustainability for lunar missions, specifically preventing the generation of orbital debris.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896724001198","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a need to formally coordinate lunar and cislunar space traffic management to mitigate the risk of collisions with micrometeoroids and orbital debris in this space domain. To control this hazard, it will be critical to develop a high-fidelity orbital debris catalog. This catalog will be maintained by monitoring and propagating the trajectory of objects. The need to perform a debris avoidance maneuver for collision avoidance will depend on the fidelity of the propagated debris trajectory. A larger uncertainty (magnitude as a function of time) will require a larger maneuver and a higher likelihood of the need to perform this maneuver. This study assesses debris avoidance maneuvers and corresponding corrective actions to recover the desired mission trajectory as a way to evaluate the desired capability of tracking of objects in lunar and cislunar orbit. The baseline Earth-to-Moon trajectory was that of the Artemis I mission. Typical conjunction assessments were postulated at 100,000 km from Earth's center (approximately a quarter of the way to the moon) and at lunar orbit insertion (LOI). For these two cases, the required debris avoidance maneuver (and hence impact to the mission) is tied to the uncertainty in orbital debris tracking. The study provides a methodology and baseline inputs to establish future requirements of debris tracking in lunar and cislunar orbits. It also reinforces the importance of long-term sustainability for lunar missions, specifically preventing the generation of orbital debris.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.