Construction of multiple heterogeneous interfaces and oxygen evolution reaction of hollow CoFe bimetallic phosphides derived from MOF template

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Progress in Natural Science: Materials International Pub Date : 2024-10-01 DOI:10.1016/j.pnsc.2024.09.001
Haiqi Zhang, Qingqing Zhang, Xiaojun Zeng
{"title":"Construction of multiple heterogeneous interfaces and oxygen evolution reaction of hollow CoFe bimetallic phosphides derived from MOF template","authors":"Haiqi Zhang,&nbsp;Qingqing Zhang,&nbsp;Xiaojun Zeng","doi":"10.1016/j.pnsc.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Rational design of electrocatalysts is the key to achieving sustainable oxygen evolution reaction (OER). The conjugation of metal organic frameworks (MOFs) with different multicomponent materials to precisely construct heterostructures is fascinating but remains a significant challenge due to different interface energies and nucleation kinetics. In this work, hollow multilayer heterogeneous catalyst (CoFeP/CoFeP/NP-C) was constructed using a rigid template sacrifice approach and an ion exchange strategy. By cleverly combining iron-based MOFs (MIL-88A, sacrifice template) nanorods, layered dihydroxides (LDH) nanosheets, and Prussian blue (PB) nancubes to form rich heterojunction and bimetallic phosphide catalysts, and by tuning the reaction kinetics and electron transfer capacities to enrich the active sites, ultimately promoting the intrinsic activity of the catalyst towards OER. Simultaneously, the co-doping of nitrogen and phosphorus in the heterostructure helped to adjust the electronic structure of the heterogeneous catalyst and the conductivity of the matrix, promoting the adsorption and desorption of OER intermediates on the catalyst surface. This work provides a new strategy for designing efficient and stable bimetallic phosphide electrocatalysts.</div></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 5","pages":"Pages 913-920"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001977","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rational design of electrocatalysts is the key to achieving sustainable oxygen evolution reaction (OER). The conjugation of metal organic frameworks (MOFs) with different multicomponent materials to precisely construct heterostructures is fascinating but remains a significant challenge due to different interface energies and nucleation kinetics. In this work, hollow multilayer heterogeneous catalyst (CoFeP/CoFeP/NP-C) was constructed using a rigid template sacrifice approach and an ion exchange strategy. By cleverly combining iron-based MOFs (MIL-88A, sacrifice template) nanorods, layered dihydroxides (LDH) nanosheets, and Prussian blue (PB) nancubes to form rich heterojunction and bimetallic phosphide catalysts, and by tuning the reaction kinetics and electron transfer capacities to enrich the active sites, ultimately promoting the intrinsic activity of the catalyst towards OER. Simultaneously, the co-doping of nitrogen and phosphorus in the heterostructure helped to adjust the electronic structure of the heterogeneous catalyst and the conductivity of the matrix, promoting the adsorption and desorption of OER intermediates on the catalyst surface. This work provides a new strategy for designing efficient and stable bimetallic phosphide electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从 MOF 模板衍生的中空 CoFe 双金属磷化物的多重异质界面构建和氧进化反应
合理设计电催化剂是实现可持续氧进化反应(OER)的关键。将金属有机框架(MOFs)与不同的多组分材料共轭以精确构建异质结构是一项令人着迷的工作,但由于界面能量和成核动力学的不同,这仍然是一项重大挑战。在这项工作中,采用刚性模板牺牲法和离子交换策略构建了中空多层异质催化剂(CoFeP/CoFeP/NP-C)。通过将铁基 MOFs(MIL-88A,牺牲模板)纳米棒、层状二氢氧化物(LDH)纳米片和普鲁士蓝(PB)纳米管巧妙地结合在一起,形成丰富的异质结和双金属磷化物催化剂,并通过调整反应动力学和电子传递能力来丰富活性位点,最终提高了催化剂对 OER 的内在活性。同时,氮和磷在异质结构中的共掺杂有助于调整异质催化剂的电子结构和基质的导电性,促进 OER 中间产物在催化剂表面的吸附和解吸。这项工作为设计高效稳定的双金属磷化物电催化剂提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
2.10%
发文量
2812
审稿时长
49 days
期刊介绍: Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings. As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.
期刊最新文献
Editorial Board Hot deformation behavior and dynamic recrystallization of 2195 Al–Li alloy with various pre-precipitation microstructures Large pyroelectric current generation induced by droplet cooling Comprehensive hydrogen storage properties of free-V Ti1-xZrxMn0.9Cr0.7Fe0.1 alloys with different Zr substitution content Unraveling the oxygen evolution activity of biomass-derived porous carbon plate as self-supported metal-free electrocatalyst for water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1