Weiqiang Hu , Zhu Qian , ZuPeng Yan , Guizhen Shi , Xia Sun , Zongqing Ma , Yongchang Liu
{"title":"Controllable preparation of ultrafine bulk ODS W alloy with ultrahigh strength and improved ductility","authors":"Weiqiang Hu , Zhu Qian , ZuPeng Yan , Guizhen Shi , Xia Sun , Zongqing Ma , Yongchang Liu","doi":"10.1016/j.scriptamat.2024.116439","DOIUrl":null,"url":null,"abstract":"<div><div>In order to alleviate the difficulties of coarse grains and poor mechanical properties in traditional hot worked bulk W alloys, we designed the entire chain preparation process including two-step freeze-drying, multi-step low temperature sintering and multi-step hot pressing. As a result, the hot worked bulk W-Y<sub>2</sub>O<sub>3</sub> alloy in this work features finest grain size (650 nm) and finer subgrains, ultrafine intergranular and intragranular oxide nanoparticles (<50 nm), novel oxide compositions (Y<sub>2</sub>WO<sub>6</sub> or Y<sub>2</sub>O<sub>3</sub>@Y<sub>2</sub>WO<sub>6</sub> core-shell phase), and specific W(110)/Y<sub>2</sub>WO<sub>6</sub> (232) (400), (432) or (<span><math><mrow><mover><mn>2</mn><mo>¯</mo></mover><mover><mn>2</mn><mo>¯</mo></mover></mrow></math></span>2) coherent phase interfaces. Furthermore, the above microstructure characteristics endow W-Y<sub>2</sub>O<sub>3</sub> alloy with highest strength (1401.0 MPa, 1284.4 MPa and 1039.1 MPa at 100 °C, 200 °C and 600 °C repectively), excellent ductility and outstanding structure thermal stability compare to traditional bulk ODS W alloy, which points out a new direction for the development of <em>ex-situ</em> precipitated second phase dispersion strengthened refractory metals.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"256 ","pages":"Article 116439"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004743","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to alleviate the difficulties of coarse grains and poor mechanical properties in traditional hot worked bulk W alloys, we designed the entire chain preparation process including two-step freeze-drying, multi-step low temperature sintering and multi-step hot pressing. As a result, the hot worked bulk W-Y2O3 alloy in this work features finest grain size (650 nm) and finer subgrains, ultrafine intergranular and intragranular oxide nanoparticles (<50 nm), novel oxide compositions (Y2WO6 or Y2O3@Y2WO6 core-shell phase), and specific W(110)/Y2WO6 (232) (400), (432) or (2) coherent phase interfaces. Furthermore, the above microstructure characteristics endow W-Y2O3 alloy with highest strength (1401.0 MPa, 1284.4 MPa and 1039.1 MPa at 100 °C, 200 °C and 600 °C repectively), excellent ductility and outstanding structure thermal stability compare to traditional bulk ODS W alloy, which points out a new direction for the development of ex-situ precipitated second phase dispersion strengthened refractory metals.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.