{"title":"Study on the structure, energy transfer, and color-tunable photoluminescence of the stable BaY2Si3O10: Bi/Tb/Sm phosphors","authors":"","doi":"10.1016/j.jlumin.2024.120969","DOIUrl":null,"url":null,"abstract":"<div><div>With the growing concern about energy consumption, white light-emitting diodes(<em>w</em>LEDs), as the fourth generation of lighting sources, are highly scrutinized by researchers. A series of Bi<sup>3+</sup>/Tb<sup>3+</sup>/Sm<sup>3+</sup> (co)doped BaY<sub>2</sub>Si<sub>3</sub>O<sub>10</sub> phosphors were prepared by traditional solid-state method, and the phase purity was analyzed by X-ray diffraction. In this work, Bi<sup>3+</sup>/Tb<sup>3+</sup>/Sm<sup>3+</sup> theoretically occupies the Ba/Y sites, and this conjecture is also proved by spectral analysis. Under near ultraviolet (<em>n</em>UV) light excitation, Bi<sup>3+</sup>/Tb<sup>3+</sup>/Sm<sup>3+</sup> is respectively used as the blue (<sup>3</sup>P<sub>1</sub> → <sup>1</sup>S<sub>0</sub>)/green (<sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub>j</sub>)/red (<sup>4</sup>G<sub>5/2</sub> → <sup>6</sup>H<sub>j</sub>) luminescence center. Due to the energy transfer (ET) efficiency between Bi<sup>3+</sup>/Sm<sup>3+</sup> is not ideal, Tb<sup>3+</sup> is introduced as a bridge to improve the ET efficiency of the whole system to achieve spectral tunability and application in <em>w</em>LEDs. And at different excitation wavelengths, Bi<sup>3+</sup> emits a wide range of blue to cyan light because it occupies two cation sites. We selected a proper excitation wavelength and obtained an emission spectrum covering the whole visible region. The CIE color coordinates (0.3487, 0.3313), the correlated color temperature (CCT, 4773.61 K), quantum efficiency (QE, 47.62 %), and thermal stability (<em>T</em><sub><em>50</em></sub> = 537 K) of BaY<sub>2</sub>Si<sub>3</sub>O<sub>10</sub>: Bi<sup>3+</sup>/Tb<sup>3+</sup>/Sm<sup>3+</sup> are discussed in depth, Lu<sup>3+</sup> was used instead of Y<sup>3+</sup> to improve the thermal stability of BYS. Its excellent luminescence performance indicates that this phosphor has potential applications in <em>n</em>UV <em>w</em>LEDs.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324005337","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing concern about energy consumption, white light-emitting diodes(wLEDs), as the fourth generation of lighting sources, are highly scrutinized by researchers. A series of Bi3+/Tb3+/Sm3+ (co)doped BaY2Si3O10 phosphors were prepared by traditional solid-state method, and the phase purity was analyzed by X-ray diffraction. In this work, Bi3+/Tb3+/Sm3+ theoretically occupies the Ba/Y sites, and this conjecture is also proved by spectral analysis. Under near ultraviolet (nUV) light excitation, Bi3+/Tb3+/Sm3+ is respectively used as the blue (3P1 → 1S0)/green (5D4 → 7Fj)/red (4G5/2 → 6Hj) luminescence center. Due to the energy transfer (ET) efficiency between Bi3+/Sm3+ is not ideal, Tb3+ is introduced as a bridge to improve the ET efficiency of the whole system to achieve spectral tunability and application in wLEDs. And at different excitation wavelengths, Bi3+ emits a wide range of blue to cyan light because it occupies two cation sites. We selected a proper excitation wavelength and obtained an emission spectrum covering the whole visible region. The CIE color coordinates (0.3487, 0.3313), the correlated color temperature (CCT, 4773.61 K), quantum efficiency (QE, 47.62 %), and thermal stability (T50 = 537 K) of BaY2Si3O10: Bi3+/Tb3+/Sm3+ are discussed in depth, Lu3+ was used instead of Y3+ to improve the thermal stability of BYS. Its excellent luminescence performance indicates that this phosphor has potential applications in nUV wLEDs.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.