{"title":"Encapsulation of gallic acid in alginate/lactoferrin composite hydrogels: Physical properties and gallic acid diffusion","authors":"","doi":"10.1016/j.foodhyd.2024.110784","DOIUrl":null,"url":null,"abstract":"<div><div>Alginate hydrogel is commonly utilized to encapsulate hydrophilic polyphenols because of its biocompatibility and flexibility. However, encapsulation with neat alginate gel is prone to uncontrolled compound diffusion during gel formation and storage. Previous research have demonstrated the electrostatic complexation of lactoferrin and alginate, nonetheless, no study has been reported on the combination of these polymers as hydrophilic polyphenol encapsulation agent. Therefore, this research aims to explore the encapsulation of gallic acid (GA), a representative of water-soluble polyphenol, in the lactoferrin-alginate composite hydrogel. The composite hydrogel of sodium alginate-lactoferrin (S-L) was prepared in solid-basis ratios of 1:0, 1:1, 2:0, 2:1, 2:2, and 2:3. The evaluation was conducted on the alginate-lactoferrin mixture viscosity, gel syneresis, gel strength and stiffness, dried gel rehydration properties, porosity, GA diffusion, and gel microstructure. Images of SEM and CLSM microscopy revealed relatively compact structures created by evenly distributed lactoferrin in the hydrogel system. According to the gel electrophoresis analysis, composite alginate-lactoferrin gel hindered the diffusion of compounds with molecular weight >50 kDa. The addition of lactoferrin to the GA-loaded alginate composite hydrogel significantly increased the retention of GA (87.1–92.2%) in the gel. The GA-loaded composite hydrogel with the alginate to lactoferrin ratio of 2:1 and 2:2 (pH 5.24–5.43) exhibited significantly better (<em>P > 0.05</em>) gallic acid retention compared to the neat alginate hydrogel (pH 5.16) in their natural pH. FTIR analysis revealed a hydrogen bond between lactoferrin and the gallic acid phenolic group, while the zeta-potential analysis showed the intermolecular interaction between positive-charged lactoferrin and negative-charged alginate. This work provides important information for the development of hydrogel-based polyphenol encapsulating materials.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":null,"pages":null},"PeriodicalIF":11.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24010580","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Alginate hydrogel is commonly utilized to encapsulate hydrophilic polyphenols because of its biocompatibility and flexibility. However, encapsulation with neat alginate gel is prone to uncontrolled compound diffusion during gel formation and storage. Previous research have demonstrated the electrostatic complexation of lactoferrin and alginate, nonetheless, no study has been reported on the combination of these polymers as hydrophilic polyphenol encapsulation agent. Therefore, this research aims to explore the encapsulation of gallic acid (GA), a representative of water-soluble polyphenol, in the lactoferrin-alginate composite hydrogel. The composite hydrogel of sodium alginate-lactoferrin (S-L) was prepared in solid-basis ratios of 1:0, 1:1, 2:0, 2:1, 2:2, and 2:3. The evaluation was conducted on the alginate-lactoferrin mixture viscosity, gel syneresis, gel strength and stiffness, dried gel rehydration properties, porosity, GA diffusion, and gel microstructure. Images of SEM and CLSM microscopy revealed relatively compact structures created by evenly distributed lactoferrin in the hydrogel system. According to the gel electrophoresis analysis, composite alginate-lactoferrin gel hindered the diffusion of compounds with molecular weight >50 kDa. The addition of lactoferrin to the GA-loaded alginate composite hydrogel significantly increased the retention of GA (87.1–92.2%) in the gel. The GA-loaded composite hydrogel with the alginate to lactoferrin ratio of 2:1 and 2:2 (pH 5.24–5.43) exhibited significantly better (P > 0.05) gallic acid retention compared to the neat alginate hydrogel (pH 5.16) in their natural pH. FTIR analysis revealed a hydrogen bond between lactoferrin and the gallic acid phenolic group, while the zeta-potential analysis showed the intermolecular interaction between positive-charged lactoferrin and negative-charged alginate. This work provides important information for the development of hydrogel-based polyphenol encapsulating materials.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.