Data Science and Model Predictive Control:

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-11-01 DOI:10.1016/j.jprocont.2024.103327
Marcelo M. Morato , Monica S. Felix
{"title":"Data Science and Model Predictive Control:","authors":"Marcelo M. Morato ,&nbsp;Monica S. Felix","doi":"10.1016/j.jprocont.2024.103327","DOIUrl":null,"url":null,"abstract":"<div><div>Model Predictive Control (MPC) is an established control framework, based on the solution of an optimisation problem to determine the (optimal) control action at each discrete-time sample. Accordingly, major theoretical advances have been provided in the literature, such as closed-loop stability and recursive feasibility certificates, for the most diverse kinds of processes descriptions. Nevertheless, identifying <em>good</em>, trustworthy models for complex systems is a task heavily affected by uncertainties. As of this, developing MPC algorithms <strong>directly from data</strong> has recently received a considerable amount of attention over the last couple of years. In this work, we review the available <strong>data-based MPC</strong> formulations, which range from reinforcement <strong>learning</strong> schemes, <strong>adaptive</strong> controllers, and novel solutions based on behavioural theory and <strong>trajectory</strong> representations. In particular, we examine the recent research body on this topic, highlighting the main features and capabilities of available algorithms, while also discussing the fundamental connections among approaches and, comparatively, their advantages and limitations.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001677","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Model Predictive Control (MPC) is an established control framework, based on the solution of an optimisation problem to determine the (optimal) control action at each discrete-time sample. Accordingly, major theoretical advances have been provided in the literature, such as closed-loop stability and recursive feasibility certificates, for the most diverse kinds of processes descriptions. Nevertheless, identifying good, trustworthy models for complex systems is a task heavily affected by uncertainties. As of this, developing MPC algorithms directly from data has recently received a considerable amount of attention over the last couple of years. In this work, we review the available data-based MPC formulations, which range from reinforcement learning schemes, adaptive controllers, and novel solutions based on behavioural theory and trajectory representations. In particular, we examine the recent research body on this topic, highlighting the main features and capabilities of available algorithms, while also discussing the fundamental connections among approaches and, comparatively, their advantages and limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据科学与模型预测控制
模型预测控制(MPC)是一种成熟的控制框架,它基于优化问题的解决方案,以确定每个离散时间样本的(最优)控制行动。因此,文献中已经取得了重大的理论进展,例如针对最多样化的过程描述提供了闭环稳定性和递归可行性证明。然而,为复杂系统确定良好、可信的模型是一项受不确定性严重影响的任务。因此,最近几年,直接从数据中开发 MPC 算法受到了广泛关注。在这项工作中,我们回顾了现有的基于数据的 MPC 方案,其中包括强化学习方案、自适应控制器以及基于行为理论和轨迹表示的新型解决方案。特别是,我们考察了最近关于这一主题的研究成果,强调了现有算法的主要特点和能力,同时还讨论了各种方法之间的基本联系,以及它们的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1