Hui-Zhen Li , Juan Cao , Liang-Ming Gao , Qiu-Hao Chen , Jun-Jie Yang , Bo-Kai Liao , Xing-Peng Guo
{"title":"Improving the discharge performance of aqueous Mg-air battery using dicarboxylic acid additives","authors":"Hui-Zhen Li , Juan Cao , Liang-Ming Gao , Qiu-Hao Chen , Jun-Jie Yang , Bo-Kai Liao , Xing-Peng Guo","doi":"10.1016/j.materresbull.2024.113160","DOIUrl":null,"url":null,"abstract":"<div><div>The aqueous Mg-air battery has promising applications in energy storage system. To improve the discharge performance of the Mg anode, four dicarboxylic acids including oxalic acid, malic acid, succinic acid, adipic acid are used as electrolyte additive for the aqueous Mg-air battery. The influence of the four selected additives and their reaction mechanism are systematically investigated by hydrogen evolution, electrochemical experiments (OCP, half/full-cell test, EIS), SEM, XRD, XPS and DFT calculations. The experiment results demonstrate that the dicarboxylic acid electrolyte additive can active the Mg anode evidently by increasing the hydrogen evolution volume and negative shift of discharge potentials. The surface morphology and the chemical composition analyses demonstrate that the four selected additives can form soluble complexes with Mg<sup>2+</sup>. The oxalic acid is the best electrolyte additive among the four dicarboxylic acids. The chelating ability of the additives and the pH of the electrolyte both affect the discharge performance of the Mg anode. The mechanism by which the dicarboxylic acids additives improve the discharge performance of the Mg anode is further proved by DFT calculations. It is the soluble Mg<sup>2+</sup> complex (MgL, L: dicarboxylate) formed between the additives and the Mg anode that inhibit the formation of the corrosion products and promote the dissolution of the Mg anode, thus enhance the discharge performance of the Mg anode.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113160"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004902","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The aqueous Mg-air battery has promising applications in energy storage system. To improve the discharge performance of the Mg anode, four dicarboxylic acids including oxalic acid, malic acid, succinic acid, adipic acid are used as electrolyte additive for the aqueous Mg-air battery. The influence of the four selected additives and their reaction mechanism are systematically investigated by hydrogen evolution, electrochemical experiments (OCP, half/full-cell test, EIS), SEM, XRD, XPS and DFT calculations. The experiment results demonstrate that the dicarboxylic acid electrolyte additive can active the Mg anode evidently by increasing the hydrogen evolution volume and negative shift of discharge potentials. The surface morphology and the chemical composition analyses demonstrate that the four selected additives can form soluble complexes with Mg2+. The oxalic acid is the best electrolyte additive among the four dicarboxylic acids. The chelating ability of the additives and the pH of the electrolyte both affect the discharge performance of the Mg anode. The mechanism by which the dicarboxylic acids additives improve the discharge performance of the Mg anode is further proved by DFT calculations. It is the soluble Mg2+ complex (MgL, L: dicarboxylate) formed between the additives and the Mg anode that inhibit the formation of the corrosion products and promote the dissolution of the Mg anode, thus enhance the discharge performance of the Mg anode.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.