Md. Rokonuzzaman , Saifur Rahman , M.A. Hannan , Mahmuda Khatun Mishu , Wen-Shan Tan , Kazi Sajedur Rahman , Jagadeesh Pasupuleti , Nowshad Amin
{"title":"Levenberg-Marquardt algorithm-based solar PV energy integrated internet of home energy management system","authors":"Md. Rokonuzzaman , Saifur Rahman , M.A. Hannan , Mahmuda Khatun Mishu , Wen-Shan Tan , Kazi Sajedur Rahman , Jagadeesh Pasupuleti , Nowshad Amin","doi":"10.1016/j.apenergy.2024.124407","DOIUrl":null,"url":null,"abstract":"<div><div>With the emergence of smart grids, the home energy management system (HEMS) has immense prospective to optimize energy usage and reduce costs in the residential sector. However, the challenges persist in effectively controlling power consumption, reducing energy expenses, enhancing resident comfort, and optimizing the coordination of renewable energy sources (RESs). In this study, a Levenberg-Marquardt (LM) algorithm-based solar PV integrated internet of home energy management system (IoHEMS) is developed. The LM algorithm has been chosen as it outperforms the other two artificial intelligence (AI) algorithms: Bayesian regularization (BR) and scaled conjugate gradient (SCG). With the setup of using 70 % of data for training, 15 % for validation, and 15 % for testing, the LM algorithm shows the regression of 0.999999, gradient of 7.8e<sup>−5</sup>, performance of 2.7133e<sup>−9</sup>, and the momentum parameter of 1e<sup>−7</sup>. When the trained data set converges to the optimal training results, the best validation performance is achieved after 1000 epochs with approximately zero mean squared error (MSE). The proposed system transforms a conventional home into a smart home by effectively managing four household appliances: Air conditioner (AC), water heater (WH), washing machine (WM), and refrigerator (ref.). The proposed model enables accurate switching functions of appliances and efficient grid-to-battery utilization, resulting in reduced peak-hour electricity tariffs. The proposed system incorporates internet of things (IoT) functionality with the HEMS, utilizing smart plug socket (SPS) and wireless sensor network (WSN) nodes. The proposed model also supports Bluetooth low energy (BLE) connectivity for offline operation. A customized android application, ‘MQTT dashboard’, allows consumers to monitor power usage, room temperature, humidity, moisture and home appliance status every 60 s intervals.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"378 ","pages":"Article 124407"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924017902","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
With the emergence of smart grids, the home energy management system (HEMS) has immense prospective to optimize energy usage and reduce costs in the residential sector. However, the challenges persist in effectively controlling power consumption, reducing energy expenses, enhancing resident comfort, and optimizing the coordination of renewable energy sources (RESs). In this study, a Levenberg-Marquardt (LM) algorithm-based solar PV integrated internet of home energy management system (IoHEMS) is developed. The LM algorithm has been chosen as it outperforms the other two artificial intelligence (AI) algorithms: Bayesian regularization (BR) and scaled conjugate gradient (SCG). With the setup of using 70 % of data for training, 15 % for validation, and 15 % for testing, the LM algorithm shows the regression of 0.999999, gradient of 7.8e−5, performance of 2.7133e−9, and the momentum parameter of 1e−7. When the trained data set converges to the optimal training results, the best validation performance is achieved after 1000 epochs with approximately zero mean squared error (MSE). The proposed system transforms a conventional home into a smart home by effectively managing four household appliances: Air conditioner (AC), water heater (WH), washing machine (WM), and refrigerator (ref.). The proposed model enables accurate switching functions of appliances and efficient grid-to-battery utilization, resulting in reduced peak-hour electricity tariffs. The proposed system incorporates internet of things (IoT) functionality with the HEMS, utilizing smart plug socket (SPS) and wireless sensor network (WSN) nodes. The proposed model also supports Bluetooth low energy (BLE) connectivity for offline operation. A customized android application, ‘MQTT dashboard’, allows consumers to monitor power usage, room temperature, humidity, moisture and home appliance status every 60 s intervals.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.