The Chemical sector in transition: Technological developments and green skills towards circularity and decarbonisation

IF 9.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Current Opinion in Green and Sustainable Chemistry Pub Date : 2024-10-10 DOI:10.1016/j.cogsc.2024.100976
Elisa Chioatto , Susanna Mancinelli , Massimiliano Mazzanti , Fabiola Onofrio
{"title":"The Chemical sector in transition: Technological developments and green skills towards circularity and decarbonisation","authors":"Elisa Chioatto ,&nbsp;Susanna Mancinelli ,&nbsp;Massimiliano Mazzanti ,&nbsp;Fabiola Onofrio","doi":"10.1016/j.cogsc.2024.100976","DOIUrl":null,"url":null,"abstract":"<div><div>The chemical sector is integral to various industries but significantly contributes to environmental pollution and social impacts. Innovation is crucial in addressing challenges such as developing renewable energy storage materials, clean hydrogen production, and infinitely recyclable polymers. Additionally, the shift towards a sustainable chemical industry requires a skilled workforce proficient in sustainable and digital technologies. This paper explores the transition from linear production methods to a Circular Economy in the chemical industry through a literature review of recent publications (2022–2024). Six key papers have been identified that focus on the role of innovation and training in the green transition of the chemical sector. The findings highlight significant progress while outlining the remaining challenges in achieving a sustainable and environmentally friendly chemical industry.</div></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"50 ","pages":"Article 100976"},"PeriodicalIF":9.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245222362400097X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The chemical sector is integral to various industries but significantly contributes to environmental pollution and social impacts. Innovation is crucial in addressing challenges such as developing renewable energy storage materials, clean hydrogen production, and infinitely recyclable polymers. Additionally, the shift towards a sustainable chemical industry requires a skilled workforce proficient in sustainable and digital technologies. This paper explores the transition from linear production methods to a Circular Economy in the chemical industry through a literature review of recent publications (2022–2024). Six key papers have been identified that focus on the role of innovation and training in the green transition of the chemical sector. The findings highlight significant progress while outlining the remaining challenges in achieving a sustainable and environmentally friendly chemical industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转型中的化工行业:实现循环和脱碳的技术发展和绿色技能
化工行业是各行各业不可或缺的一部分,但也对环境污染和社会影响产生了重大影响。创新对于应对挑战至关重要,例如开发可再生能源储存材料、清洁制氢和无限可回收聚合物。此外,向可持续化工业转变需要一支精通可持续技术和数字技术的熟练劳动力队伍。本文通过对近期出版物(2022-2024 年)的文献综述,探讨了化工行业从线性生产方式向循环经济的转变。本文确定了六篇重要文献,重点关注创新和培训在化工行业绿色转型中的作用。研究结果强调了取得的重大进展,同时概述了在实现可持续和环境友好型化工行业方面仍然存在的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.00
自引率
2.20%
发文量
140
审稿时长
103 days
期刊介绍: The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.
期刊最新文献
Recent advances in plasma-based methane reforming for syngas production Green ammonia synthesis technology that does not require H2 gas: Reaction technology and prospects for ammonia synthesis using H2O as a direct hydrogen source Machine learning to support prospective life cycle assessment of emerging chemical technologies Plasma treating water for nitrate based nitrogen fertilizer - A review of recent device designs Atmospheric-pressure plasmas for NOx production: Short review on current status
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1