Qin Zhang , Adedapo N. Awolayo , Patrick R. Phelps , Shafik Vadsariya , Christiaan T. Laureijs , Matthew D. Eisaman , Benjamin M. Tutolo
{"title":"Enhanced cation release via acid pretreatment for gigaton-scale geologic CO2 sequestration in basalt","authors":"Qin Zhang , Adedapo N. Awolayo , Patrick R. Phelps , Shafik Vadsariya , Christiaan T. Laureijs , Matthew D. Eisaman , Benjamin M. Tutolo","doi":"10.1016/j.ijggc.2024.104266","DOIUrl":null,"url":null,"abstract":"<div><div>Basalt-based CO<sub>2</sub> mineralization offers gigaton-scale capacity for sequestering anthropogenic CO<sub>2</sub>, but it faces challenges such as low cation productivity and formation of pore-clogging clays. A potential solution is to treat the basalt with aqueous acids such as HCl, a by-product of some electrochemical CO<sub>2</sub> removal processes. To date, our understanding of basalt-acid interactions is limited to extrapolations from higher pH environments, and therefore little is known about the mechanisms of the reaction at acidic conditions. To address this knowledge gap, far-from-equilibrium dissolution rates of basaltic glass and crystalline basalt were measured in mixed flow reactors at pH 0 to 9, and temperatures from 23 to 60 °C, with a specific focus on the low-pH region. Measured geometric surface area-normalized dissolution rates can be described according to: <span><span><span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>5</mn><mo>.</mo><mn>6</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>)</mo></mrow></mrow></msup><mi>⋅</mi><mo>exp</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mo>−</mo><mn>42</mn><mo>.</mo><mn>2</mn><mo>±</mo><mn>2</mn><mo>.</mo><mn>0</mn></mrow><mrow><mi>R</mi></mrow></mfrac></mrow></mfenced><mi>⋅</mi><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></mfenced><mi>⋅</mi><msubsup><mrow><mi>a</mi></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>81</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>02</mn><mo>)</mo></mrow></mrow></msubsup><mo>+</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>10</mn><mo>.</mo><mn>9</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>)</mo></mrow></mrow></msup><mi>⋅</mi><mo>exp</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mo>−</mo><mn>32</mn><mo>.</mo><mn>5</mn><mo>±</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow><mrow><mi>R</mi></mrow></mfrac></mrow></mfenced><mi>⋅</mi><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></mfenced><mi>⋅</mi><msubsup><mrow><mi>a</mi></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>15</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>01</mn><mo>)</mo></mrow></mrow></msubsup></mrow></math></span></span></span> where <span><math><mi>k</mi></math></span> is the rate constant (mol<!--> <!-->m<sup>−2</sup> <!-->s<sup>−1</sup>) at any temperature <span><math><mi>T</mi></math></span> (Kelvin) and <span><math><msup><mrow><mtext>H</mtext></mrow><mrow><mo>+</mo></mrow></msup></math></span> activity (<span><math><msub><mrow><mi>a</mi></mrow><mrow><msup><mrow><mtext>H</mtext></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span>), <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is the reference temperature (298.15<!--> <!-->K), and <span><math><mi>R</mi></math></span> is the ideal gas constant (8.314 <span><math><mo>×</mo></math></span> 10<sup>-3</sup> <!-->kJ<!--> <!-->mol<sup>−1</sup> <!-->K<sup>−1</sup>). The combined results of kinetic experiments and geochemical modeling indicate that acid reaction with basalt yield orders of magnitude faster cation release rates, effectively neutralizes fluid pH, and limits clay formation by limiting Si release into the system.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104266"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624002093","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Basalt-based CO2 mineralization offers gigaton-scale capacity for sequestering anthropogenic CO2, but it faces challenges such as low cation productivity and formation of pore-clogging clays. A potential solution is to treat the basalt with aqueous acids such as HCl, a by-product of some electrochemical CO2 removal processes. To date, our understanding of basalt-acid interactions is limited to extrapolations from higher pH environments, and therefore little is known about the mechanisms of the reaction at acidic conditions. To address this knowledge gap, far-from-equilibrium dissolution rates of basaltic glass and crystalline basalt were measured in mixed flow reactors at pH 0 to 9, and temperatures from 23 to 60 °C, with a specific focus on the low-pH region. Measured geometric surface area-normalized dissolution rates can be described according to: where is the rate constant (mol m−2 s−1) at any temperature (Kelvin) and activity (), is the reference temperature (298.15 K), and is the ideal gas constant (8.314 10-3 kJ mol−1 K−1). The combined results of kinetic experiments and geochemical modeling indicate that acid reaction with basalt yield orders of magnitude faster cation release rates, effectively neutralizes fluid pH, and limits clay formation by limiting Si release into the system.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.