Forms of rare earth loss and the function mechanism of acetic acid in the aluminum removal process of rare earth leaching liquor

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL Minerals Engineering Pub Date : 2024-11-02 DOI:10.1016/j.mineng.2024.109081
Chen Xin , Chen Jin-fa , Xiao Xin-lei , Fan Lin , Xiao Yan-fei , Huang Li
{"title":"Forms of rare earth loss and the function mechanism of acetic acid in the aluminum removal process of rare earth leaching liquor","authors":"Chen Xin ,&nbsp;Chen Jin-fa ,&nbsp;Xiao Xin-lei ,&nbsp;Fan Lin ,&nbsp;Xiao Yan-fei ,&nbsp;Huang Li","doi":"10.1016/j.mineng.2024.109081","DOIUrl":null,"url":null,"abstract":"<div><div>The leaching liquor extracted from ion-adsorption type rare earth (RE) ores contains large amounts of aluminum (Al) ions. The neutralization-precipitation method for Al removal results in the loss of large amounts of RE, leading to the waste of RE resources. Preliminary research has shown that the introduction of acetic acid (HAc) during the Al removal process could effectively reduce RE loss. However, there has been no in-depth study on the forms of RE loss during the Al removal process with the neutralization-precipitation method and the function mechanism of HAc. In this paper, the yttrium element was used as a representation of RE for relevant research. It was found that the forms of RE loss mainly include adsorption loss and coprecipitation loss, and the addition of HAc can simultaneously reduce both types of loss. The addition of HAc can generate Y(Ac)<sup>2+</sup> and Y(Ac)<sub>2</sub><sup>+</sup> complexes with Y<sup>3+</sup>, leading to an increase in the initial precipitation pH of yttrium hydroxide from 6.62 to 6.87, thereby reducing the coprecipitation loss of RE. Additionally, HAc was adsorbed on the aluminum hydroxide (Al(OH)<sub>3</sub>), which increased the surface potential and decreased the specific surface area of Al(OH)<sub>3</sub>, thus reducing the adsorption loss of RE. Finally, through precipitation experiments on a mixed solution of aluminum sulfate and yttrium sulfate, it was found that when the neutralization pH was 5.2, the percentage of yttrium lost decreased from 18.91 % to 12.66 % as the concentration of HAc was increased from 0 to 0.012 mol/L. The above function mechanism of HAc was further verified through XPS, SEM-EDS, and other tests on the precipitate.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"219 ","pages":"Article 109081"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524005107","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The leaching liquor extracted from ion-adsorption type rare earth (RE) ores contains large amounts of aluminum (Al) ions. The neutralization-precipitation method for Al removal results in the loss of large amounts of RE, leading to the waste of RE resources. Preliminary research has shown that the introduction of acetic acid (HAc) during the Al removal process could effectively reduce RE loss. However, there has been no in-depth study on the forms of RE loss during the Al removal process with the neutralization-precipitation method and the function mechanism of HAc. In this paper, the yttrium element was used as a representation of RE for relevant research. It was found that the forms of RE loss mainly include adsorption loss and coprecipitation loss, and the addition of HAc can simultaneously reduce both types of loss. The addition of HAc can generate Y(Ac)2+ and Y(Ac)2+ complexes with Y3+, leading to an increase in the initial precipitation pH of yttrium hydroxide from 6.62 to 6.87, thereby reducing the coprecipitation loss of RE. Additionally, HAc was adsorbed on the aluminum hydroxide (Al(OH)3), which increased the surface potential and decreased the specific surface area of Al(OH)3, thus reducing the adsorption loss of RE. Finally, through precipitation experiments on a mixed solution of aluminum sulfate and yttrium sulfate, it was found that when the neutralization pH was 5.2, the percentage of yttrium lost decreased from 18.91 % to 12.66 % as the concentration of HAc was increased from 0 to 0.012 mol/L. The above function mechanism of HAc was further verified through XPS, SEM-EDS, and other tests on the precipitate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀土浸出液除铝过程中的稀土流失形式及醋酸的作用机理
从离子吸附型稀土(RE)矿石中提取的浸出液含有大量的铝(Al)离子。中和沉淀法脱铝会导致大量稀土流失,造成稀土资源的浪费。初步研究表明,在脱铝过程中引入醋酸(HAc)可有效减少可再生能源的损失。然而,对于中和沉淀法脱铝过程中 RE 的损耗形式以及 HAc 的作用机理还没有深入的研究。本文以钇元素作为 RE 的代表进行了相关研究。研究发现,RE 的损耗形式主要包括吸附损耗和共沉淀损耗,而添加 HAc 可同时减少这两种损耗。HAc的加入可生成Y(Ac)2+和Y(Ac)2+与Y3+的络合物,导致氢氧化钇的初始沉淀pH值从6.62升高到6.87,从而减少了RE的共沉淀损失。此外,HAc 被吸附在氢氧化铝(Al(OH)3)上,使氢氧化铝(Al(OH)3)的表面电位升高,比表面积降低,从而减少了 RE 的吸附损失。最后,通过对硫酸铝和硫酸钇的混合溶液进行沉淀实验发现,当中和 pH 值为 5.2 时,随着 HAc 浓度从 0 摩尔/升增加到 0.012 摩尔/升,钇的损失百分比从 18.91% 降低到 12.66%。通过对沉淀物进行 XPS、SEM-EDS 等测试,进一步验证了 HAc 的上述作用机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
期刊最新文献
Enhancing durability and strength of concrete through an innovative abrasion and cement slurry treatment of recycled concrete aggregates Investigating the floatability of sperrylite and its interactions with selected standard and novel collectors Surface hydrophobic modification of sulfur-containing waste rock for the source control acid mine drainage Influence of calcination conditions on deep eutectic solvents (DES) leaching efficiency of light rare earth elements in bastnasite ore Effect of bleaching powder (ClO−) on pulsating HGMS of chalcopyrite from arsenopyrite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1