Vibration control of two portal frames type shear buildings through self-synchronous dynamics of two non-ideal sources indirectly coupled

IF 2.8 3区 工程技术 Q2 MECHANICS International Journal of Non-Linear Mechanics Pub Date : 2024-10-24 DOI:10.1016/j.ijnonlinmec.2024.104929
{"title":"Vibration control of two portal frames type shear buildings through self-synchronous dynamics of two non-ideal sources indirectly coupled","authors":"","doi":"10.1016/j.ijnonlinmec.2024.104929","DOIUrl":null,"url":null,"abstract":"<div><div>The present paper proposes a new device where it is observed the self-synchronization between two unbalanced DC motors with a limited power supply when they are indirectly coupled. The vibrating system studied consists of two portal frames type shear buildings coupled, carrying each an unbalanced DC motor. The engines are supposed to rotate in the same direction and act on each as external excitation. The dynamics investigations are done with analytical and numerical methods to achieve this purpose. The synchronous solutions are derived and their stability conditions are also explored using the averaging method. The results of this analytical investigation are confirmed later by numerical simulations. The effects of some physical parameters on the self-synchronization of DC motors are presented. The impact of the nonlinear coupling between the floors on the DC motors dynamics is also explored. The Sommerfeld effect appearing in the system is reduced by taking into account the damping coming from the environment and the coupling between the portal frame. It is observed that in-phase synchronization of the non-ideal sources assures a low amplitude of vibration in the different floors compared to opposite-phase synchronization.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002944","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper proposes a new device where it is observed the self-synchronization between two unbalanced DC motors with a limited power supply when they are indirectly coupled. The vibrating system studied consists of two portal frames type shear buildings coupled, carrying each an unbalanced DC motor. The engines are supposed to rotate in the same direction and act on each as external excitation. The dynamics investigations are done with analytical and numerical methods to achieve this purpose. The synchronous solutions are derived and their stability conditions are also explored using the averaging method. The results of this analytical investigation are confirmed later by numerical simulations. The effects of some physical parameters on the self-synchronization of DC motors are presented. The impact of the nonlinear coupling between the floors on the DC motors dynamics is also explored. The Sommerfeld effect appearing in the system is reduced by taking into account the damping coming from the environment and the coupling between the portal frame. It is observed that in-phase synchronization of the non-ideal sources assures a low amplitude of vibration in the different floors compared to opposite-phase synchronization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过两个非理想源间接耦合的自同步动力学控制两门式框架剪力墙建筑的振动
本文提出了一种新的装置,在这种装置中,可以观察到两个不平衡直流电机在间接耦合的情况下,在有限的电力供应下实现自同步。所研究的振动系统由两个门式框架型剪力墙建筑耦合组成,每个门式框架型剪力墙建筑携带一个不平衡直流电机。假设发动机沿同一方向旋转,并作为外部激励作用于每个发动机。为实现这一目的,采用分析和数值方法进行了动力学研究。利用平均法得出了同步解,并探讨了其稳定性条件。分析研究的结果随后通过数值模拟得到了证实。本文介绍了一些物理参数对直流电机自同步的影响。此外,还探讨了地板之间的非线性耦合对直流电机动力学的影响。考虑到来自环境的阻尼和门架之间的耦合,系统中出现的索默费尔德效应得以降低。据观察,与反相同步相比,非理想源的同相同步可确保不同楼层的振动振幅较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
期刊最新文献
Data-driven bifurcation analysis using parameter-dependent trajectories Nonlinear vibration analysis of composite and functionally graded material shell structures: A literature review from 2013 to 2023 Shakedown analysis of incompressible materials under cyclic loads: A locking-free CS-FEM-Q5 numerical approach Axisymmetric membrane nano-resonators: A comparison of nonlinear reduced-order models Vibration control of two portal frames type shear buildings through self-synchronous dynamics of two non-ideal sources indirectly coupled
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1