Kaidi Wan , Bing-Yue Liu , Ying Fan , Svetlana A. Ikonnikova
{"title":"Modelling and assessing dynamic energy supply resilience to disruption events: An oil supply disruption case in China","authors":"Kaidi Wan , Bing-Yue Liu , Ying Fan , Svetlana A. Ikonnikova","doi":"10.1016/j.eneco.2024.108013","DOIUrl":null,"url":null,"abstract":"<div><div>Energy supply disruptions can have unpredictable and significant economic impacts, making supply resilience a critical concern for policymakers. Assessing and improving supply resilience have become necessary to make energy policies more effective. This study aimed to develop a model for resilience assessment and enhancement. First, we created a Mixed-Supply-side Dynamic Inoperability Input–output Model (M-SDIIM), which could calculate sectors' dynamic inoperability and economic losses under import or production disruptions. Second, a dynamic supply resilience curve was established using M-SDIIM, and the calculating method for robustness and recoverability was used to visualise the resilience characteristics. Finally, given the practical significance of oil security, we incorporated the strategic stock strategy into M-SDIIM to construct a resilience enhancement model. Using the developed model, we conducted a case study of China's oil supply disruption. The results demonstrated that M-SDIIM effectively assessed the energy supply resilience of interdependent infrastructure. In an extremely large oil disruption event, the resilience curves of all sectors in China showed a typical U-shape; however, significant differences were apparent in the robustness and recoverability of the sectors, with six sectors, including Petroleum processing, Transport and Chemical products, among the most vulnerable. Second, the resilience enhancement model enabled a quantitative assessment of strategies, providing a clear improvement target. In China, more than the current stock levels are needed; at least 73-day crude oil imports are required. Thus, we propose targeted policy recommendations to assist countries in formulating energy policies.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"140 ","pages":"Article 108013"},"PeriodicalIF":13.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988324007217","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy supply disruptions can have unpredictable and significant economic impacts, making supply resilience a critical concern for policymakers. Assessing and improving supply resilience have become necessary to make energy policies more effective. This study aimed to develop a model for resilience assessment and enhancement. First, we created a Mixed-Supply-side Dynamic Inoperability Input–output Model (M-SDIIM), which could calculate sectors' dynamic inoperability and economic losses under import or production disruptions. Second, a dynamic supply resilience curve was established using M-SDIIM, and the calculating method for robustness and recoverability was used to visualise the resilience characteristics. Finally, given the practical significance of oil security, we incorporated the strategic stock strategy into M-SDIIM to construct a resilience enhancement model. Using the developed model, we conducted a case study of China's oil supply disruption. The results demonstrated that M-SDIIM effectively assessed the energy supply resilience of interdependent infrastructure. In an extremely large oil disruption event, the resilience curves of all sectors in China showed a typical U-shape; however, significant differences were apparent in the robustness and recoverability of the sectors, with six sectors, including Petroleum processing, Transport and Chemical products, among the most vulnerable. Second, the resilience enhancement model enabled a quantitative assessment of strategies, providing a clear improvement target. In China, more than the current stock levels are needed; at least 73-day crude oil imports are required. Thus, we propose targeted policy recommendations to assist countries in formulating energy policies.
期刊介绍:
Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.