Mario Martinoli, Alessio Moneta, Gianluca Pallante
{"title":"Calibration and validation of macroeconomic simulation models by statistical causal search","authors":"Mario Martinoli, Alessio Moneta, Gianluca Pallante","doi":"10.1016/j.jebo.2024.106786","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a general procedure for macroeconomic models’ calibration and validation. Configurations of parameters are selected on the basis of a loss function involving a distance between model-derived structural coefficients and their empirical counterparts. These, in both cases, are locally identified by exploiting non-Gaussianity in a structural vector autoregressive framework under a data-driven approach. We use model confidence set to account for the uncertainty in the selection procedure. We provide a measure of validation by comparing (model’s and empirical) shocks-variables structure. We apply our procedure to a complex macroeconomic simulation model that studies the link between climate change and economic growth.</div></div>","PeriodicalId":48409,"journal":{"name":"Journal of Economic Behavior & Organization","volume":"228 ","pages":"Article 106786"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Behavior & Organization","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167268124004001","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a general procedure for macroeconomic models’ calibration and validation. Configurations of parameters are selected on the basis of a loss function involving a distance between model-derived structural coefficients and their empirical counterparts. These, in both cases, are locally identified by exploiting non-Gaussianity in a structural vector autoregressive framework under a data-driven approach. We use model confidence set to account for the uncertainty in the selection procedure. We provide a measure of validation by comparing (model’s and empirical) shocks-variables structure. We apply our procedure to a complex macroeconomic simulation model that studies the link between climate change and economic growth.
期刊介绍:
The Journal of Economic Behavior and Organization is devoted to theoretical and empirical research concerning economic decision, organization and behavior and to economic change in all its aspects. Its specific purposes are to foster an improved understanding of how human cognitive, computational and informational characteristics influence the working of economic organizations and market economies and how an economy structural features lead to various types of micro and macro behavior, to changing patterns of development and to institutional evolution. Research with these purposes that explore the interrelations of economics with other disciplines such as biology, psychology, law, anthropology, sociology and mathematics is particularly welcome.