IoU-guided Siamese network with high-confidence template fusion for visual tracking

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-10-28 DOI:10.1016/j.neucom.2024.128774
Zhigang Liu , Hao Huang , Hongyu Dong , Fuyuan Xing
{"title":"IoU-guided Siamese network with high-confidence template fusion for visual tracking","authors":"Zhigang Liu ,&nbsp;Hao Huang ,&nbsp;Hongyu Dong ,&nbsp;Fuyuan Xing","doi":"10.1016/j.neucom.2024.128774","DOIUrl":null,"url":null,"abstract":"<div><div>Existing IoU-guided trackers use IoU score to weight the classification score only in testing phase, this model mismatch between training and testing phases leads to poor tracking performance especially when facing background distractors. In this paper, we propose an IoU-guided Siamese network with High-confidence template fusion (SiamIH) for visual tracking. An IoU-guided distractor suppression network is proposed, which uses IoU information to guide classification in training phase and testing phase, and makes the tracking model to suppress background distractors. To cope with appearance variations, we design a high-confidence template fusion network that fuses APCE-based high-confidence template and the initial template to generate more reliable template. Experimental results on OTB2013, OTB2015, UAV123, LaSOT, and GOT10k demonstrate that the proposed SiamIH achieves state-of-the-art tracking performance.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015455","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Existing IoU-guided trackers use IoU score to weight the classification score only in testing phase, this model mismatch between training and testing phases leads to poor tracking performance especially when facing background distractors. In this paper, we propose an IoU-guided Siamese network with High-confidence template fusion (SiamIH) for visual tracking. An IoU-guided distractor suppression network is proposed, which uses IoU information to guide classification in training phase and testing phase, and makes the tracking model to suppress background distractors. To cope with appearance variations, we design a high-confidence template fusion network that fuses APCE-based high-confidence template and the initial template to generate more reliable template. Experimental results on OTB2013, OTB2015, UAV123, LaSOT, and GOT10k demonstrate that the proposed SiamIH achieves state-of-the-art tracking performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于视觉跟踪的高置信度模板融合 IoU 引导连体网络
现有的 IoU 引导跟踪器仅在测试阶段使用 IoU 分数作为分类分数的权重,这种训练和测试阶段的模型不匹配会导致跟踪性能低下,尤其是在面对背景干扰时。在本文中,我们提出了一种用于视觉跟踪的高置信度模板融合 IoU 引导暹罗网络(SiamIH)。该网络在训练和测试阶段利用 IoU 信息指导分类,并使跟踪模型抑制背景干扰。为了应对外观变化,我们设计了高置信度模板融合网络,将基于 APCE 的高置信度模板与初始模板融合,生成更可靠的模板。在 OTB2013、OTB2015、UAV123、LaSOT 和 GOT10k 上的实验结果表明,所提出的 SiamIH 实现了最先进的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
An efficient re-parameterization feature pyramid network on YOLOv8 to the detection of steel surface defect Editorial Board Multi-contrast image clustering via multi-resolution augmentation and momentum-output queues Augmented ELBO regularization for enhanced clustering in variational autoencoders Learning from different perspectives for regret reduction in reinforcement learning: A free energy approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1