Advance deep learning for soil type classification in space informatics

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Industrial Information Integration Pub Date : 2024-11-01 DOI:10.1016/j.jii.2024.100712
Brij B. Gupta , Akshat Gaurav , Varsha Arya , Razaz Waheeb Attar
{"title":"Advance deep learning for soil type classification in space informatics","authors":"Brij B. Gupta ,&nbsp;Akshat Gaurav ,&nbsp;Varsha Arya ,&nbsp;Razaz Waheeb Attar","doi":"10.1016/j.jii.2024.100712","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate soil type categorization is very important for resource management in space exploration. Using a complete system including a space station, rovers, and a deep learning framework, this study proposes an advanced deep learning model for soil type categorization in space informatics. Gathering and preprocessing multispectral and hyperspectral soil data, the rovers send it to the space station for in-depth study. Our model had a test accuracy of about 80%. For space informatics, the suggested method guarantees strong and accurate soil categorization, therefore enabling efficient decision-making.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100712"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001559","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate soil type categorization is very important for resource management in space exploration. Using a complete system including a space station, rovers, and a deep learning framework, this study proposes an advanced deep learning model for soil type categorization in space informatics. Gathering and preprocessing multispectral and hyperspectral soil data, the rovers send it to the space station for in-depth study. Our model had a test accuracy of about 80%. For space informatics, the suggested method guarantees strong and accurate soil categorization, therefore enabling efficient decision-making.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间信息学中用于土壤类型分类的高级深度学习
准确的土壤类型分类对太空探索中的资源管理非常重要。本研究利用包括空间站、漫游车和深度学习框架在内的完整系统,为空间信息学中的土壤类型分类提出了一种先进的深度学习模型。漫游车收集并预处理多光谱和高光谱土壤数据,然后将其发送到空间站进行深入研究。我们的模型测试准确率约为 80%。对于空间信息学来说,所建议的方法可以保证土壤分类的准确性,从而实现高效决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
期刊最新文献
Enhancing mixed gas discrimination in e-nose system: Sparse recurrent neural networks using transient current fluctuation of SMO array sensor An effective farmer-centred mobile intelligence solution using lightweight deep learning for integrated wheat pest management TRIPLE: A blockchain-based digital twin framework for cyber–physical systems security Industrial information integration in deep space exploration and exploitation: Architecture and technology Interoperability levels and challenges of digital twins in cyber–physical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1