Function offloading approaches in serverless computing: A Survey

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computers & Electrical Engineering Pub Date : 2024-11-01 DOI:10.1016/j.compeleceng.2024.109832
Mohsen Ghorbian, Mostafa Ghobaei-Arani
{"title":"Function offloading approaches in serverless computing: A Survey","authors":"Mohsen Ghorbian,&nbsp;Mostafa Ghobaei-Arani","doi":"10.1016/j.compeleceng.2024.109832","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, serverless computing has become one of the popular approaches to developing and running applications, allowing developers to run their code directly in the cloud without worrying about managing server infrastructure. One of the critical aspects of serverless computing is offloading approaches, which refers to transferring computing tasks or data to other locations to reduce the processing load of local devices. Considering the use of different approaches and strategies in the offloading process in serverless computing, not choosing the right approach can cause the unloading process to face challenges such as network delay, security problems, and complexity of resource management. Therefore, a detailed understanding of the loading approaches used in serverless computing can significantly reduce the challenges in this process. This paper provides a comprehensive and systematic review of various commonly used offloading approaches in serverless computing in the form of a taxonomy. The applied approaches are based on machine learning (ML), frameworks, in-network computing (INC), and heuristics. This classification is done to identify the strengths and weaknesses of each of these approaches to help developers improve the productivity and efficiency of their systems by choosing the best offloading strategies. Another goal of this article is to identify and analyze open challenges and issues related to the offloading process in serverless computing to propose effective solutions to these challenges and provide future research directions. Finally, this article expands the existing knowledge in the offloading field and creates new fields for research and development.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109832"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007596","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, serverless computing has become one of the popular approaches to developing and running applications, allowing developers to run their code directly in the cloud without worrying about managing server infrastructure. One of the critical aspects of serverless computing is offloading approaches, which refers to transferring computing tasks or data to other locations to reduce the processing load of local devices. Considering the use of different approaches and strategies in the offloading process in serverless computing, not choosing the right approach can cause the unloading process to face challenges such as network delay, security problems, and complexity of resource management. Therefore, a detailed understanding of the loading approaches used in serverless computing can significantly reduce the challenges in this process. This paper provides a comprehensive and systematic review of various commonly used offloading approaches in serverless computing in the form of a taxonomy. The applied approaches are based on machine learning (ML), frameworks, in-network computing (INC), and heuristics. This classification is done to identify the strengths and weaknesses of each of these approaches to help developers improve the productivity and efficiency of their systems by choosing the best offloading strategies. Another goal of this article is to identify and analyze open challenges and issues related to the offloading process in serverless computing to propose effective solutions to these challenges and provide future research directions. Finally, this article expands the existing knowledge in the offloading field and creates new fields for research and development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无服务器计算中的功能卸载方法:调查
近年来,无服务器计算已成为开发和运行应用程序的流行方法之一,它允许开发人员直接在云中运行代码,而不必担心管理服务器基础设施。无服务器计算的一个重要方面是卸载方法,它是指将计算任务或数据传输到其他位置,以减少本地设备的处理负荷。考虑到在无服务器计算的卸载过程中会使用不同的方法和策略,如果没有选择正确的方法,卸载过程可能会面临网络延迟、安全问题和资源管理复杂性等挑战。因此,详细了解无服务器计算中使用的加载方法可以大大减少这一过程中的挑战。本文以分类法的形式对无服务器计算中常用的各种卸载方法进行了全面系统的综述。这些应用方法基于机器学习(ML)、框架、网络内计算(INC)和启发式方法。进行这种分类是为了确定每种方法的优缺点,以帮助开发人员通过选择最佳卸载策略来提高系统的生产力和效率。本文的另一个目的是识别和分析与无服务器计算中卸载过程相关的公开挑战和问题,从而针对这些挑战提出有效的解决方案,并提供未来的研究方向。最后,本文拓展了卸载领域的现有知识,并开创了新的研发领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
期刊最新文献
Efficient Bayesian ECG denoising using adaptive covariance estimation and nonlinear Kalman Filtering Time domain correlation entropy image conversion: A new method for fault diagnosis of vehicle-mounted cable terminals The coupled Kaplan–Yorke-Logistic map for the image encryption applications Video anomaly detection using transformers and ensemble of convolutional auto-encoders Enhancing the performance of graphene and LCP 1x2 rectangular microstrip antenna arrays for terahertz applications using photonic band gap structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1