{"title":"Multi-objective energy management using a smart charging technique of a microgrid with the charging impact of plug-in hybrid electric vehicles","authors":"","doi":"10.1016/j.scs.2024.105923","DOIUrl":null,"url":null,"abstract":"<div><div>The Microgrid (MG) concept is being developed to better integrate renewable energy sources and automate distribution networks. Microgrids combine distributed generating units (DGs) and energy storage systems to achieve this. This research paper aims to simultaneously minimize the daily operational cost and net environmental pollution of a small MG system, factoring in the charging demand from Plug-in-Hybrid Electric Vehicles (PHEVs) and consumer load demands. The proposed energy management process not only minimizes operational costs and emissions, but also determines the optimal battery size for the energy storage system. The analysis also explores the importance of two critical variables - the operation and maintenance costs of the DGs, and the total daily cost of the battery energy storage system. The demand for PHEV charging is managed using an intelligent charging approach. Given the complexity of the optimization, a recently developed metaheuristic algorithm, Slime Mould Algorithm (SMA), is applied. The performance of SMA is compared against the Grasshopper Optimization Algorithm and Sine Cosine Algorithm. To solve the multi-objective problem, a weighted sum method maintaining non-dominance and a fuzzy decision-maker technique are employed alongside the suggested algorithms. Three different scenarios verify the proposed method's effectiveness.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724007479","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Microgrid (MG) concept is being developed to better integrate renewable energy sources and automate distribution networks. Microgrids combine distributed generating units (DGs) and energy storage systems to achieve this. This research paper aims to simultaneously minimize the daily operational cost and net environmental pollution of a small MG system, factoring in the charging demand from Plug-in-Hybrid Electric Vehicles (PHEVs) and consumer load demands. The proposed energy management process not only minimizes operational costs and emissions, but also determines the optimal battery size for the energy storage system. The analysis also explores the importance of two critical variables - the operation and maintenance costs of the DGs, and the total daily cost of the battery energy storage system. The demand for PHEV charging is managed using an intelligent charging approach. Given the complexity of the optimization, a recently developed metaheuristic algorithm, Slime Mould Algorithm (SMA), is applied. The performance of SMA is compared against the Grasshopper Optimization Algorithm and Sine Cosine Algorithm. To solve the multi-objective problem, a weighted sum method maintaining non-dominance and a fuzzy decision-maker technique are employed alongside the suggested algorithms. Three different scenarios verify the proposed method's effectiveness.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;