Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment

Shree Om Bade, Olusegun Stanley Tomomewo
{"title":"Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment","authors":"Shree Om Bade,&nbsp;Olusegun Stanley Tomomewo","doi":"10.1016/j.cles.2024.100157","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the optimal design of a hybrid renewable energy system, integrating wind turbines, solar photovoltaic systems, biomass, and battery and hydrogen storage to ensure a reliable energy supply at the lowest annual cost for a residential load in Kern County, USA. The hybrid generic algorithm particle swarm optimization (GAPSO) algorithm was adopted to determine the optimal configuration of parameters and cost-effectiveness, considering technical, economic, environmental, and social performance indicators. The generic algorithm (GA) and particle swarm optimization (PSO) validate the effectiveness of the proposed technique, showcasing its efficiency in system optimization. The findings indicate that GAPSO outperforms GA and PSO due to its rapid convergence, lowest final fitness value, and stable optimization process. The hybrid GAPSO's performance, combined with the different capacities of wind turbines (4,561 kW), solar PV (8,480 kW), biomass (2,261 kW), battery banks (8,000 kWh), and fuel cells (2,392 kW), resulted in an annual cost of $6,239,193; energy cost and net present value of $0.48/kWh and $101,333,937. The system maintained a supply loss of 0.8 %, achieved an availability index of 99.2 %, a renewable energy fraction of 88.87 %, GHGs emission of 953,615 kg, land use of 3,842,875 m<sup>2</sup>, and water consumption 528,678 L respectively. GAPSO achieved a 2.17 % and 0.01 % improvement in cost-effectiveness and 11.11 % increase in reliability compared to GA and PSO.</div></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the optimal design of a hybrid renewable energy system, integrating wind turbines, solar photovoltaic systems, biomass, and battery and hydrogen storage to ensure a reliable energy supply at the lowest annual cost for a residential load in Kern County, USA. The hybrid generic algorithm particle swarm optimization (GAPSO) algorithm was adopted to determine the optimal configuration of parameters and cost-effectiveness, considering technical, economic, environmental, and social performance indicators. The generic algorithm (GA) and particle swarm optimization (PSO) validate the effectiveness of the proposed technique, showcasing its efficiency in system optimization. The findings indicate that GAPSO outperforms GA and PSO due to its rapid convergence, lowest final fitness value, and stable optimization process. The hybrid GAPSO's performance, combined with the different capacities of wind turbines (4,561 kW), solar PV (8,480 kW), biomass (2,261 kW), battery banks (8,000 kWh), and fuel cells (2,392 kW), resulted in an annual cost of $6,239,193; energy cost and net present value of $0.48/kWh and $101,333,937. The system maintained a supply loss of 0.8 %, achieved an availability index of 99.2 %, a renewable energy fraction of 88.87 %, GHGs emission of 953,615 kg, land use of 3,842,875 m2, and water consumption 528,678 L respectively. GAPSO achieved a 2.17 % and 0.01 % improvement in cost-effectiveness and 11.11 % increase in reliability compared to GA and PSO.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用通用算法--粒子群优化法优化带电池和储氢的风能-太阳能-生物质能混合系统的性能评估
本文研究了混合可再生能源系统的优化设计,该系统集成了风力涡轮机、太阳能光伏系统、生物质能以及电池和氢气存储,以确保以最低的年成本为美国克恩县的居民负荷提供可靠的能源供应。考虑到技术、经济、环境和社会性能指标,采用了混合通用算法粒子群优化(GAPSO)算法来确定最佳参数配置和成本效益。通用算法(GA)和粒子群优化(PSO)验证了所提技术的有效性,展示了其在系统优化中的效率。研究结果表明,GAPSO 的收敛速度快、最终适应度值最低、优化过程稳定,因此优于 GA 和 PSO。混合 GAPSO 的性能与风力涡轮机(4,561 千瓦)、太阳能光伏发电(8,480 千瓦)、生物质能(2,261 千瓦)、蓄电池组(8,000 千瓦时)和燃料电池(2,392 千瓦)的不同容量相结合,每年的成本为 6,239,193 美元;能源成本和净现值分别为 0.48 美元/千瓦时和 101,333,937 美元。该系统的供电损失率为 0.8%,可用指数为 99.2%,可再生能源比例为 88.87%,温室气体排放量为 953,615 千克,土地使用面积为 3,842,875 平方米,耗水量为 528,678 升。与 GA 和 PSO 相比,GAPSO 的成本效益分别提高了 2.17 % 和 0.01 %,可靠性提高了 11.11 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Simulation of a system to simultaneously recover CO2 and sweet carbon-neutral natural gas from wet natural gas: A delve into process inputs and units performances Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network Optimizing textile dyeing and finishing for improved energy efficiency and sustainability in fleece knitted fabrics Techno economic study of floating solar photovoltaic project in Indonesia using RETscreen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1