The effect of the ultra-low emission zone on PM2.5 concentration in Seoul, South Korea

IF 4.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment Pub Date : 2024-10-30 DOI:10.1016/j.atmosenv.2024.120908
Dongkyu Park , Byung In Lim
{"title":"The effect of the ultra-low emission zone on PM2.5 concentration in Seoul, South Korea","authors":"Dongkyu Park ,&nbsp;Byung In Lim","doi":"10.1016/j.atmosenv.2024.120908","DOIUrl":null,"url":null,"abstract":"<div><div>As studies regarding the positive effect of Low Emission Zones (LEZs) and people's risk perception about air pollution have increased, more powerful and specific traffic regulation policies have been required. London is the first city in the world to implement an Ultra-low Emission Zone (ULEZ) in addition to the existing LEZ. Benchmarking London's ULEZ, a ULEZ policy was implemented in Seoul, South Korea on December 1, 2019. The goal of the policy is to improve air quality by prohibiting entry of vehicles registered nationwide into Seoul's ULEZ that do not meet a specific emission standard including diesel, gasoline, and LPG fuel-based vehicles. This study analyzed the effect of Seoul's ULEZ policy on the five major atmospheric pollutants (PM2.5, PM10, NO2, CO, SO2, O3) concentration in the zone, particularly focusing on PM2.5 concentration. The analysis employs Difference-in-Differences (DD) approach, comparing data from one year before and after the policy's implementation on December 1, 2019. The findings indicate that Seoul's ULEZ policy resulted in a 9.8% increase in PM2.5 concentrations. Conversely, the policy led to reductions in PM10, NO2, CO, and SO2 concentrations by 12.0%, 17.3%, 5.9%, and 10.8%, respectively, while the effect on O3 was statistically insignificant. These empirical results suggest that the ULEZ may need to incorporate more stringent emission standards, expand its coverage, or introduce additional measures to address the unintended increase in PM2.5 concentration.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"340 ","pages":"Article 120908"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005831","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As studies regarding the positive effect of Low Emission Zones (LEZs) and people's risk perception about air pollution have increased, more powerful and specific traffic regulation policies have been required. London is the first city in the world to implement an Ultra-low Emission Zone (ULEZ) in addition to the existing LEZ. Benchmarking London's ULEZ, a ULEZ policy was implemented in Seoul, South Korea on December 1, 2019. The goal of the policy is to improve air quality by prohibiting entry of vehicles registered nationwide into Seoul's ULEZ that do not meet a specific emission standard including diesel, gasoline, and LPG fuel-based vehicles. This study analyzed the effect of Seoul's ULEZ policy on the five major atmospheric pollutants (PM2.5, PM10, NO2, CO, SO2, O3) concentration in the zone, particularly focusing on PM2.5 concentration. The analysis employs Difference-in-Differences (DD) approach, comparing data from one year before and after the policy's implementation on December 1, 2019. The findings indicate that Seoul's ULEZ policy resulted in a 9.8% increase in PM2.5 concentrations. Conversely, the policy led to reductions in PM10, NO2, CO, and SO2 concentrations by 12.0%, 17.3%, 5.9%, and 10.8%, respectively, while the effect on O3 was statistically insignificant. These empirical results suggest that the ULEZ may need to incorporate more stringent emission standards, expand its coverage, or introduce additional measures to address the unintended increase in PM2.5 concentration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超低排放区对韩国首尔 PM2.5 浓度的影响
随着有关低排放区(LEZs)的积极作用和人们对空气污染风险认知的研究不断增加,需要制定更有力、更具体的交通监管政策。伦敦是世界上第一个在现有低排放区基础上实施超低排放区(ULEZ)的城市。以伦敦的超低排放区为标杆,韩国首尔于 2019 年 12 月 1 日实施了超低排放区政策。该政策的目标是通过禁止全国范围内注册的不符合特定排放标准的车辆(包括柴油、汽油和液化石油气燃料车辆)进入首尔的 ULEZ 来改善空气质量。本研究分析了首尔 ULEZ 政策对区内五种主要大气污染物(PM2.5、PM10、NO2、CO、SO2、O3)浓度的影响,尤其关注 PM2.5 浓度。分析采用了差分法(DD),比较了 2019 年 12 月 1 日政策实施前后一年的数据。结果表明,首尔的 ULEZ 政策导致 PM2.5 浓度上升了 9.8%。相反,该政策导致 PM10、NO2、CO 和 SO2 浓度分别降低了 12.0%、17.3%、5.9% 和 10.8%,而对 O3 的影响在统计上并不显著。这些实证结果表明,ULEZ 可能需要纳入更严格的排放标准、扩大其覆盖范围或引入额外措施,以解决 PM2.5 浓度意外增加的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
期刊最新文献
137Cs in outdoor air due to Chernobyl-contaminated wood combustion for residential heating in Thessaloniki, North Greece Reaction between peracetic acid and carbonyl oxide: Quantitative kinetics and insight into implications in the atmosphere Aerosol retrievals derived from a low-cost Calitoo sun-photometer taken on board a research vessel Development of an online cloud fog monitor: Design, laboratory, and field deployment at an unoccupied coastal site in Eastern China The coupling model of random forest and interpretable method quantifies the response relationship between PM2.5 and influencing factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1