Mineral mapping of a gold prospect using ordinary cokriging and support vector machine algorithm: case of the Tikondi gold permit (eastern Cameroon)

IF 1.827 Q2 Earth and Planetary Sciences Arabian Journal of Geosciences Pub Date : 2024-11-04 DOI:10.1007/s12517-024-12119-8
Andre William Boroh, Esaïe Silvère Lawane, Bertrand Ngwang Nfor, Reynolds Yvan Abende, Francois Ndong Bidzang
{"title":"Mineral mapping of a gold prospect using ordinary cokriging and support vector machine algorithm: case of the Tikondi gold permit (eastern Cameroon)","authors":"Andre William Boroh,&nbsp;Esaïe Silvère Lawane,&nbsp;Bertrand Ngwang Nfor,&nbsp;Reynolds Yvan Abende,&nbsp;Francois Ndong Bidzang","doi":"10.1007/s12517-024-12119-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study applied geostatistical and machine learning models, namely ordinary cokriging (OCK) and the support machine vector (SVM) algorithm, for mineral mapping of a gold prospect at Tikondi (East, Cameroon). For this purpose, five hundred and fifty (550) soil samples were collected and analyzed for Au, Ag, Zn, Fe, Cu, Pb, As, Sb, W and Bi. OCK and SVM models were validated using numerical and graphical methods of validation. Results showed that the gold grade ranged from 1 to 2480 ppb, with an average value of 9.973 ppb. The principal component analysis (PCA) demonstrated that bismuth (Bi) has the strongest association with gold grades. For OCK, the histogram of errors indicated a solid assessment when the root mean square error (RMSE = 21.41), mean absolute error (MAE = 4.76) and correlation coefficient (<i>R</i> = 0.841) indicated that OCK is a decent model, but with certain values poorly predicted. The confusion matrix and ROC measurement indicated clearly that SVM was a robust and efficient predictor for prospect mapping.</p></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"17 12","pages":""},"PeriodicalIF":1.8270,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12517-024-12119-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This study applied geostatistical and machine learning models, namely ordinary cokriging (OCK) and the support machine vector (SVM) algorithm, for mineral mapping of a gold prospect at Tikondi (East, Cameroon). For this purpose, five hundred and fifty (550) soil samples were collected and analyzed for Au, Ag, Zn, Fe, Cu, Pb, As, Sb, W and Bi. OCK and SVM models were validated using numerical and graphical methods of validation. Results showed that the gold grade ranged from 1 to 2480 ppb, with an average value of 9.973 ppb. The principal component analysis (PCA) demonstrated that bismuth (Bi) has the strongest association with gold grades. For OCK, the histogram of errors indicated a solid assessment when the root mean square error (RMSE = 21.41), mean absolute error (MAE = 4.76) and correlation coefficient (R = 0.841) indicated that OCK is a decent model, but with certain values poorly predicted. The confusion matrix and ROC measurement indicated clearly that SVM was a robust and efficient predictor for prospect mapping.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用普通 cokriging 和支持向量机算法绘制金矿远景的矿产图:Tikondi 金矿许可(喀麦隆东部)案例
本研究应用了地质统计和机器学习模型,即普通克里格法(OCK)和支持机器向量算法(SVM),对喀麦隆东部蒂孔迪的金矿远景进行了矿物测绘。为此,收集了五百五十(550)份土壤样本,并对其进行了金、银、锌、铁、铜、铅、砷、锑、钨和铋分析。采用数值和图形验证方法对 OCK 和 SVM 模型进行了验证。结果表明,金品位在 1 至 2480 ppb 之间,平均值为 9.973 ppb。主成分分析(PCA)表明,铋(Bi)与金品位的关联性最强。就 OCK 而言,误差直方图显示了一个可靠的评估,均方根误差(RMSE = 21.41)、平均绝对误差(MAE = 4.76)和相关系数(R = 0.841)表明 OCK 是一个不错的模型,但对某些值的预测较差。混淆矩阵和 ROC 测量结果清楚地表明,SVM 是一种稳健、高效的前景预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Arabian Journal of Geosciences
Arabian Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
0.00%
发文量
1587
审稿时长
6.7 months
期刊介绍: The Arabian Journal of Geosciences is the official journal of the Saudi Society for Geosciences and publishes peer-reviewed original and review articles on the entire range of Earth Science themes, focused on, but not limited to, those that have regional significance to the Middle East and the Euro-Mediterranean Zone. Key topics therefore include; geology, hydrogeology, earth system science, petroleum sciences, geophysics, seismology and crustal structures, tectonics, sedimentology, palaeontology, metamorphic and igneous petrology, natural hazards, environmental sciences and sustainable development, geoarchaeology, geomorphology, paleo-environment studies, oceanography, atmospheric sciences, GIS and remote sensing, geodesy, mineralogy, volcanology, geochemistry and metallogenesis.
期刊最新文献
Lithofacies and microfacies and depositional environment model of the Cenozoic carbonate platform: an example from the Upper Jafnayn Formation of Jafnayn area in north-east Oman Evaluating and comparing seismic hazard parameters for Northeast India: a comprehensive study Investigation of the effects of different layering characteristics on the response of semi-sine hills Hydrogeomorphological analysis of Niger River Sub-basins for flood prediction in Anambra State, Nigeria Well log petrophysics and interpretation of 3D seismic profiles of reservoirs in the Southern Field, Rio Del Rey Basin, Cameroon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1