Oxidation Properties of Additively Manufactured High Entropy Alloys: A Short Review

IF 2.1 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Oxidation of Metals Pub Date : 2024-09-23 DOI:10.1007/s11085-024-10313-3
Jhuo-Lun Lee, An-Chou Yeh, Hideyuki Murakami
{"title":"Oxidation Properties of Additively Manufactured High Entropy Alloys: A Short Review","authors":"Jhuo-Lun Lee,&nbsp;An-Chou Yeh,&nbsp;Hideyuki Murakami","doi":"10.1007/s11085-024-10313-3","DOIUrl":null,"url":null,"abstract":"<div><p>High entropy alloys (HEAs) challenge conventional alloy design by incorporating five or more principal elements in near-equal atomic proportions, forming random solid solutions with simple phases. HEAs exhibit exceptional properties such as high phase stability, mechanical strength, corrosion, oxidation, wear, fatigue resistance, and notable thermal stability. While traditional methods like arc melting and casting are often used for HEA preparation, they pose limitations due to cost and processing challenges. Additive manufacturing has emerged as a transformative technique, enabling the cost-effective fabrication of complex structures with customized properties. Here, we summarized the following “state-of-the-art” additively manufactured alloy systems: AlCrCoNiX (X = Fe, Si, Ti, etc.) HEAs, CoCrFeMnNi HEAs, and refractory HEAs. This review focused on elucidating their oxidation properties, emphasizing key findings, challenges, and opportunities. It also discussed the potential strategies for enhancing oxidation resistance. Additionally, it highlighted research gaps and underscored the urgent need for further exploration to meet the demands for high-temperature applications.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 6","pages":"1369 - 1379"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10313-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

High entropy alloys (HEAs) challenge conventional alloy design by incorporating five or more principal elements in near-equal atomic proportions, forming random solid solutions with simple phases. HEAs exhibit exceptional properties such as high phase stability, mechanical strength, corrosion, oxidation, wear, fatigue resistance, and notable thermal stability. While traditional methods like arc melting and casting are often used for HEA preparation, they pose limitations due to cost and processing challenges. Additive manufacturing has emerged as a transformative technique, enabling the cost-effective fabrication of complex structures with customized properties. Here, we summarized the following “state-of-the-art” additively manufactured alloy systems: AlCrCoNiX (X = Fe, Si, Ti, etc.) HEAs, CoCrFeMnNi HEAs, and refractory HEAs. This review focused on elucidating their oxidation properties, emphasizing key findings, challenges, and opportunities. It also discussed the potential strategies for enhancing oxidation resistance. Additionally, it highlighted research gaps and underscored the urgent need for further exploration to meet the demands for high-temperature applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加制造的高熵合金的氧化特性:简评
高熵合金(HEAs)以近乎相等的原子比例加入五种或更多的主要元素,形成具有简单相的随机固溶体,从而对传统合金设计提出了挑战。HEA 具有优异的性能,如高相稳性、机械强度、耐腐蚀性、抗氧化性、耐磨性、抗疲劳性和显著的热稳定性。虽然电弧熔炼和铸造等传统方法常用于制备 HEA,但由于成本和加工难题,这些方法存在局限性。增材制造已成为一种变革性技术,能够以具有成本效益的方式制造出具有定制特性的复杂结构。在此,我们总结了以下 "最先进的 "快速成型合金系统:AlCrCoNiX(X = Fe、Si、Ti 等)HEAs、CoCrFeMnNi HEAs 和难熔 HEAs。本综述重点阐述了这些材料的氧化特性,强调了主要发现、挑战和机遇。综述还讨论了增强抗氧化性的潜在策略。此外,它还强调了研究空白,并强调了进一步探索以满足高温应用需求的迫切性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oxidation of Metals
Oxidation of Metals 工程技术-冶金工程
CiteScore
5.10
自引率
9.10%
发文量
47
审稿时长
2.2 months
期刊介绍: Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.
期刊最新文献
Segmentation and Metallographic Evaluation of Aluminium Slurry Coatings Using Machine Learning Techniques Editorial on Modeling, Prediction and Simulation Editorial on Oxidation in Complex Atmospheres Editorial on Oxidation of Novel Metallic Materials (Intermetallics, MMCs, HEAs…) Editorial on Coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1