{"title":"Dʺ Structures Beneath the East China Sea Resolved by P-Wave Slowness Anomalies","authors":"Jiewen Li, Dongdong Tian, Daoyuan Sun, Ping Tong","doi":"10.1029/2024JB029584","DOIUrl":null,"url":null,"abstract":"<p>The Dʺ layer, defined as 200–400 km in the lowermost mantle, is a thermal and chemical boundary layer between the solid silicate mantle and the liquid outer core. Deciphering the detailed structures of the Dʺ region is essential for unlocking the thermal and chemical states in the deep Earth. Here, we precisely measure the slowness and back-azimuth of the direct P-waves by beamforming based on the <i>F</i>-trace stack at the KZ Array in Kazakhstan, to investigate the detailed Dʺ structures beneath the East China Sea. The P-wave slowness for rays turning beneath the East China Sea exhibits a significant anomaly as a function of the P-wave turning depth. Strong correlations between slowness and back-azimuth anomalies for rays from different directions suggest a tilted Moho, with a tilting direction of ∼103° and a dip angle of ∼15°, beneath the KZ Array, further supported by radial receiver functions. After correcting for the slowness anomalies caused by the tilted Moho and heterogeneities outside the Dʺ layer, we construct a series of <i>Vp</i> Dʺ models to fit the remaining slowness anomalies for rays sampling the East China Sea. We obtain the best Dʺ model with a height of 360 km, a maximum <i>δVp</i> of +1.4%, a Dʺ discontinuity thickness of 120 km, and an 80-km low-velocity layer at the base of the mantle by minimizing residuals between the predicted and observed slowness anomalies. Combining the sharpness of the Dʺ discontinuity imaged here with mineralogical analysis suggests a Fe-enriched region in a cold subduction environment beneath the East China Sea.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029584","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Dʺ layer, defined as 200–400 km in the lowermost mantle, is a thermal and chemical boundary layer between the solid silicate mantle and the liquid outer core. Deciphering the detailed structures of the Dʺ region is essential for unlocking the thermal and chemical states in the deep Earth. Here, we precisely measure the slowness and back-azimuth of the direct P-waves by beamforming based on the F-trace stack at the KZ Array in Kazakhstan, to investigate the detailed Dʺ structures beneath the East China Sea. The P-wave slowness for rays turning beneath the East China Sea exhibits a significant anomaly as a function of the P-wave turning depth. Strong correlations between slowness and back-azimuth anomalies for rays from different directions suggest a tilted Moho, with a tilting direction of ∼103° and a dip angle of ∼15°, beneath the KZ Array, further supported by radial receiver functions. After correcting for the slowness anomalies caused by the tilted Moho and heterogeneities outside the Dʺ layer, we construct a series of Vp Dʺ models to fit the remaining slowness anomalies for rays sampling the East China Sea. We obtain the best Dʺ model with a height of 360 km, a maximum δVp of +1.4%, a Dʺ discontinuity thickness of 120 km, and an 80-km low-velocity layer at the base of the mantle by minimizing residuals between the predicted and observed slowness anomalies. Combining the sharpness of the Dʺ discontinuity imaged here with mineralogical analysis suggests a Fe-enriched region in a cold subduction environment beneath the East China Sea.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.