{"title":"Unveiling the mechanism behind irregular inclusions triggering no HIC cracks in steels","authors":"Rongzhe Hu, Zhixian Peng, Shiqi Zhang, Liquan Ding, Feng Huang, Zhengliang Xue, Jing Liu","doi":"10.1038/s41529-024-00525-y","DOIUrl":null,"url":null,"abstract":"This research investigates a specific type of irregularly shaped inclusions in steel, which are typically considered detrimental. A comparative study of two steels, treated with different inclusion modification methods by oxide metallurgy technology, reveals that spherical inclusions with complex structures can provide beneficial multipoint trap sites for hydrogen, thereby reducing the risk of hydrogen-induced cracking (HIC). Notably, irregular stripe-shaped silicate-oxide inclusions with sharp tips, due to their hot-soft characteristics during the process of hot-rolling, do not exacerbate cracks but instead mitigate local stresses. Conversely, large single-phase hard inclusions are detrimental to HIC resistance. This investigation provides insights into the mechanisms behind why certain irregular inclusions do not trigger HIC crack after the NACE TM 0284-2016 standard test.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-15"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00525-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00525-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research investigates a specific type of irregularly shaped inclusions in steel, which are typically considered detrimental. A comparative study of two steels, treated with different inclusion modification methods by oxide metallurgy technology, reveals that spherical inclusions with complex structures can provide beneficial multipoint trap sites for hydrogen, thereby reducing the risk of hydrogen-induced cracking (HIC). Notably, irregular stripe-shaped silicate-oxide inclusions with sharp tips, due to their hot-soft characteristics during the process of hot-rolling, do not exacerbate cracks but instead mitigate local stresses. Conversely, large single-phase hard inclusions are detrimental to HIC resistance. This investigation provides insights into the mechanisms behind why certain irregular inclusions do not trigger HIC crack after the NACE TM 0284-2016 standard test.
这项研究调查了钢中一种特殊的不规则夹杂物,这种夹杂物通常被认为是有害的。通过对采用氧化物冶金技术的不同夹杂物改性方法处理的两种钢材进行比较研究,发现具有复杂结构的球形夹杂物可以为氢提供有益的多点捕集点,从而降低氢致开裂(HIC)的风险。值得注意的是,具有尖锐尖端的不规则条纹状氧化硅夹杂物由于在热轧过程中具有热软特性,不仅不会加剧裂纹,反而会减轻局部应力。相反,大的单相硬夹杂物不利于抗 HIC 性能。这项调查有助于深入了解某些不规则夹杂物在经过 NACE TM 0284-2016 标准测试后不会引发 HIC 裂纹的机制。
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies