Mark J. Grosvenor, Vissia Ardiyani, Martin J. Wooster, Stefan Gillott, David C. Green, Puji Lestari, Wiranda Suri
{"title":"Catastrophic impact of extreme 2019 Indonesian peatland fires on urban air quality and health","authors":"Mark J. Grosvenor, Vissia Ardiyani, Martin J. Wooster, Stefan Gillott, David C. Green, Puji Lestari, Wiranda Suri","doi":"10.1038/s43247-024-01813-w","DOIUrl":null,"url":null,"abstract":"Tropical peatland fires generate substantial quantities of airborne fine particulate matter (PM2.5) and in Indonesia are intensified during El Niño-related drought leading to severe air quality impacts affecting local and distant populations. Limited in-situ data often necessitates reliance on air quality models, like that of the Copernicus Atmosphere Monitoring Service, whose accuracy in extreme conditions is not fully understood. Here we demonstrate how a network of low-cost sensors around Palangka Raya, Central Kalimantan during the 2019 fire season, quantified extreme air quality and city-scale variability. The data indicates relatively strong model performance. Health impacts are substantial with estimates of over 1200 excess deaths in the Palangka Raya region, over 3200 across Central Kalimantan and more than 87,000 nationwide in 2019 due to fire-induced PM2.5 exposure. These findings highlight the need for urgent action to mitigate extreme fire events, including reducing fire use and landscape remediation to prevent peat fire ignition. Networks of low-cost sensors can be used with atmospheric models to understand variability of air quality on a fine scale and show that emissions from peatland fires contribute to many excess deaths, suggests an analysis from the 2019 fire season in Kalimantan","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01813-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01813-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tropical peatland fires generate substantial quantities of airborne fine particulate matter (PM2.5) and in Indonesia are intensified during El Niño-related drought leading to severe air quality impacts affecting local and distant populations. Limited in-situ data often necessitates reliance on air quality models, like that of the Copernicus Atmosphere Monitoring Service, whose accuracy in extreme conditions is not fully understood. Here we demonstrate how a network of low-cost sensors around Palangka Raya, Central Kalimantan during the 2019 fire season, quantified extreme air quality and city-scale variability. The data indicates relatively strong model performance. Health impacts are substantial with estimates of over 1200 excess deaths in the Palangka Raya region, over 3200 across Central Kalimantan and more than 87,000 nationwide in 2019 due to fire-induced PM2.5 exposure. These findings highlight the need for urgent action to mitigate extreme fire events, including reducing fire use and landscape remediation to prevent peat fire ignition. Networks of low-cost sensors can be used with atmospheric models to understand variability of air quality on a fine scale and show that emissions from peatland fires contribute to many excess deaths, suggests an analysis from the 2019 fire season in Kalimantan
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.