Martina Olsson, Robin Storm, Linnea Björn, Viktor Lilja, Leonard Krupnik, Yang Chen, Polina Naidjonoka, Ana Diaz, Mirko Holler, Benjamin Watts, Anette Larsson, Marianne Liebi, Aleksandar Matic
{"title":"Phase-separated polymer blends for controlled drug delivery by tuning morphology","authors":"Martina Olsson, Robin Storm, Linnea Björn, Viktor Lilja, Leonard Krupnik, Yang Chen, Polina Naidjonoka, Ana Diaz, Mirko Holler, Benjamin Watts, Anette Larsson, Marianne Liebi, Aleksandar Matic","doi":"10.1038/s43246-024-00678-y","DOIUrl":null,"url":null,"abstract":"Controlling drug release rate and providing physical and chemical stability to the active pharmaceutical ingredient are key properties of oral solid dosage forms. Here, we demonstrate a formulation strategy using phase-separated polymer blends where the morphology provides a route for tuning the drug release profile. By utilising phase separation of a hydrophobic and a hydrophilic polymer, the hydrophilic component will act as a channelling agent, creating a porous network upon dissolution that will dictate the release characteristics. With ptychographic X-ray tomography and scanning transmission X-ray microscopy we reveal how the morphology depends on both polymer fraction and presence of drug, and how the drug is distributed over the polymer domains. Combining X-ray imaging results with dissolution studies reveal how the morphologies are correlated with the drug release and showcase how tuning the morphology of a polymer matrix in oral formulations can be utilised as a method for controlled drug release. Drug delivery via solid oral dosage requires a controlled release rate and physical and chemical stability of the drug within the formulation. Here, X-ray tomography and spectromicroscopy reveal how the morphology of a phase-separated polymer blend controls drug release.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00678-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00678-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling drug release rate and providing physical and chemical stability to the active pharmaceutical ingredient are key properties of oral solid dosage forms. Here, we demonstrate a formulation strategy using phase-separated polymer blends where the morphology provides a route for tuning the drug release profile. By utilising phase separation of a hydrophobic and a hydrophilic polymer, the hydrophilic component will act as a channelling agent, creating a porous network upon dissolution that will dictate the release characteristics. With ptychographic X-ray tomography and scanning transmission X-ray microscopy we reveal how the morphology depends on both polymer fraction and presence of drug, and how the drug is distributed over the polymer domains. Combining X-ray imaging results with dissolution studies reveal how the morphologies are correlated with the drug release and showcase how tuning the morphology of a polymer matrix in oral formulations can be utilised as a method for controlled drug release. Drug delivery via solid oral dosage requires a controlled release rate and physical and chemical stability of the drug within the formulation. Here, X-ray tomography and spectromicroscopy reveal how the morphology of a phase-separated polymer blend controls drug release.
控制药物释放速度并为活性药物成分提供物理和化学稳定性是口服固体制剂的关键特性。在这里,我们展示了一种使用相分离聚合物混合物的配方策略,其形态为调整药物释放曲线提供了一条途径。通过利用疏水性聚合物和亲水性聚合物的相分离,亲水性成分将起到导流作用,在溶解时形成多孔网络,从而决定药物的释放特性。通过 X 射线层析成像和扫描透射 X 射线显微镜,我们揭示了形态如何取决于聚合物成分和药物的存在,以及药物如何分布在聚合物畴上。将 X 射线成像结果与溶解研究相结合,可以揭示形态如何与药物释放相关联,并展示如何利用调整口服制剂中聚合物基质的形态来控制药物释放。通过口服固体制剂给药需要控制释放率以及制剂中药物的物理和化学稳定性。在这里,X 射线断层扫描和光谱分析揭示了相分离聚合物混合物的形态是如何控制药物释放的。
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.