Regulatory mechanisms of strigolactone perception in rice

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-11-04 DOI:10.1016/j.cell.2024.10.009
Qingliang Hu, Huihui Liu, Yajun He, Yanrong Hao, Jijun Yan, Simao Liu, Xiahe Huang, Zongyun Yan, Dahan Zhang, Xinwei Ban, Hao Zhang, Qianqian Li, Jingkun Zhang, Peiyong Xin, Yanhui Jing, Liquan Kou, Dajun Sang, Yonghong Wang, Yingchun Wang, Xiangbing Meng, Jiayang Li
{"title":"Regulatory mechanisms of strigolactone perception in rice","authors":"Qingliang Hu, Huihui Liu, Yajun He, Yanrong Hao, Jijun Yan, Simao Liu, Xiahe Huang, Zongyun Yan, Dahan Zhang, Xinwei Ban, Hao Zhang, Qianqian Li, Jingkun Zhang, Peiyong Xin, Yanhui Jing, Liquan Kou, Dajun Sang, Yonghong Wang, Yingchun Wang, Xiangbing Meng, Jiayang Li","doi":"10.1016/j.cell.2024.10.009","DOIUrl":null,"url":null,"abstract":"Strigolactones (SLs) are hormones essential for plant development and environmental responses. SL perception requires the formation of the complex composed of an SL receptor DWARF14 (D14), F-box protein D3, and transcriptional repressor D53, triggering ubiquitination and degradation of D53 to activate signal transduction. However, mechanisms of SL perception and their influence on plant architecture and environmental responses remain elusive and controversial. Here, we report that key residues at interfaces of the AtD14-D3-ASK1 complex are essential for the activation of SL perception, discover that overexpression of the D3-CTH motif negatively regulates SL perception to enhance tillering, and reveal the importance of phosphorylation and N-terminal disordered (NTD) domain in mediating ubiquitination and degradation of D14. Importantly, low nitrogen promotes phosphorylation and stabilization of D14 to repress rice tillering. These findings reveal a panorama of the activation, termination, and regulation of SL perception, which determines the plasticity of plant architecture in complex environments.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"26 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.10.009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Strigolactones (SLs) are hormones essential for plant development and environmental responses. SL perception requires the formation of the complex composed of an SL receptor DWARF14 (D14), F-box protein D3, and transcriptional repressor D53, triggering ubiquitination and degradation of D53 to activate signal transduction. However, mechanisms of SL perception and their influence on plant architecture and environmental responses remain elusive and controversial. Here, we report that key residues at interfaces of the AtD14-D3-ASK1 complex are essential for the activation of SL perception, discover that overexpression of the D3-CTH motif negatively regulates SL perception to enhance tillering, and reveal the importance of phosphorylation and N-terminal disordered (NTD) domain in mediating ubiquitination and degradation of D14. Importantly, low nitrogen promotes phosphorylation and stabilization of D14 to repress rice tillering. These findings reveal a panorama of the activation, termination, and regulation of SL perception, which determines the plasticity of plant architecture in complex environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水稻对绞股蓝内酯感知的调控机制
硬脂内酯(SL)是植物发育和环境反应所必需的激素。SL的感知需要形成由SL受体DWARF14(D14)、F-盒蛋白D3和转录抑制因子D53组成的复合物,触发D53的泛素化和降解,从而激活信号转导。然而,SL 的感知机制及其对植物结构和环境响应的影响仍然是难以捉摸和有争议的。在这里,我们报告了 AtD14-D3-ASK1 复合物界面上的关键残基对于激活 SL 感知至关重要,发现过量表达 D3-CTH 基序会负向调节 SL 感知以增强分蘖,并揭示了磷酸化和 N 端紊乱(NTD)结构域在介导 D14 泛素化和降解中的重要性。重要的是,低氮会促进 D14 的磷酸化和稳定,从而抑制水稻分蘖。这些发现揭示了SL感知的激活、终止和调控的全景,而SL感知决定了植物在复杂环境中的可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Bayesian Approach for Computing Free Energy on Perturbation Graphs with Cycles. Deterministic and Faster GW Calculations with a Reduced Number of Valence States: O(N2 ln N) Scaling in the Plane-Waves Formalism. The Dynamic Diversity and Invariance of Ab Initio Water. Automatic Feature Selection for Atom-Centered Neural Network Potentials Using a Gradient Boosting Decision Algorithm. Data Quality in the Fitting of Approximate Models: A Computational Chemistry Perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1