A natural variant of COOL1 gene enhances cold tolerance for high-latitude adaptation in maize

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Pub Date : 2025-01-21 DOI:10.1016/j.cell.2024.12.018
Rong Zeng, Yiting Shi, Li Guo, Diyi Fu, Minze Li, Xiaoyan Zhang, Zhuoyang Li, Junhong Zhuang, Xiaohong Yang, Jianru Zuo, Zhizhong Gong, Feng Tian, Shuhua Yang
{"title":"A natural variant of COOL1 gene enhances cold tolerance for high-latitude adaptation in maize","authors":"Rong Zeng, Yiting Shi, Li Guo, Diyi Fu, Minze Li, Xiaoyan Zhang, Zhuoyang Li, Junhong Zhuang, Xiaohong Yang, Jianru Zuo, Zhizhong Gong, Feng Tian, Shuhua Yang","doi":"10.1016/j.cell.2024.12.018","DOIUrl":null,"url":null,"abstract":"Low temperature severely limits the growth, yield, and geographical distribution of maize (<em>Zea mays</em> L.). How maize adapts to cold climates remains largely unclear. Here, we identify a basic helix-loop-helix (bHLH) transcription factor, COLD-RESPONSIVE OPERATION LOCUS 1 (COOL1), as a crucial regulator of maize cold tolerance through genome-wide association studies. Natural variations in the <em>COOL1</em> promoter affect the binding affinity of ELONGATED HYPOCOTYL5 (HY5), a transcriptional factor repressing <em>COOL1</em> transcription. COOL1, in turn, negatively regulates downstream cold-responsive genes, thereby modulating cold tolerance. Moreover, calcium-dependent protein kinase CPK17 translocates to the nucleus and stabilizes COOL1 in response to cold stress. Intriguingly, the cold-tolerant allele of <em>COOL1</em> is predominantly distributed in northern high latitudes with cold climates. This study defines a previously unknown pathway by which the COOL1-centered module regulates cold tolerance for high latitudinal adaptation in maize.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"74 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.12.018","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Low temperature severely limits the growth, yield, and geographical distribution of maize (Zea mays L.). How maize adapts to cold climates remains largely unclear. Here, we identify a basic helix-loop-helix (bHLH) transcription factor, COLD-RESPONSIVE OPERATION LOCUS 1 (COOL1), as a crucial regulator of maize cold tolerance through genome-wide association studies. Natural variations in the COOL1 promoter affect the binding affinity of ELONGATED HYPOCOTYL5 (HY5), a transcriptional factor repressing COOL1 transcription. COOL1, in turn, negatively regulates downstream cold-responsive genes, thereby modulating cold tolerance. Moreover, calcium-dependent protein kinase CPK17 translocates to the nucleus and stabilizes COOL1 in response to cold stress. Intriguingly, the cold-tolerant allele of COOL1 is predominantly distributed in northern high latitudes with cold climates. This study defines a previously unknown pathway by which the COOL1-centered module regulates cold tolerance for high latitudinal adaptation in maize.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
期刊最新文献
Integration of 168,000 samples reveals global patterns of the human gut microbiome Massively parallel reporter assay investigates shared genetic variants of eight psychiatric disorders KDM6B-dependent epigenetic programming of uterine fibroblasts in early pregnancy regulates parturition timing in mice A natural variant of COOL1 gene enhances cold tolerance for high-latitude adaptation in maize Metagenome-informed metaproteomics of the human gut microbiome, host, and dietary exposome uncovers signatures of health and inflammatory bowel disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1