Clinical validation of an AI-based pathology tool for scoring of metabolic dysfunction-associated steatohepatitis

Hanna Pulaski, Stephen A. Harrison, Shraddha S. Mehta, Arun J. Sanyal, Marlena C. Vitali, Laryssa C. Manigat, Hypatia Hou, Susan P. Madasu Christudoss, Sara M. Hoffman, Adam Stanford-Moore, Robert Egger, Jonathan Glickman, Murray Resnick, Neel Patel, Cristin E. Taylor, Robert P. Myers, Chuhan Chung, Scott D. Patterson, Anne-Sophie Sejling, Anne Minnich, Vipul Baxi, G. Mani Subramaniam, Quentin M. Anstee, Rohit Loomba, Vlad Ratziu, Michael C. Montalto, Nick P. Anderson, Andrew H. Beck, Katy E. Wack
{"title":"Clinical validation of an AI-based pathology tool for scoring of metabolic dysfunction-associated steatohepatitis","authors":"Hanna Pulaski, Stephen A. Harrison, Shraddha S. Mehta, Arun J. Sanyal, Marlena C. Vitali, Laryssa C. Manigat, Hypatia Hou, Susan P. Madasu Christudoss, Sara M. Hoffman, Adam Stanford-Moore, Robert Egger, Jonathan Glickman, Murray Resnick, Neel Patel, Cristin E. Taylor, Robert P. Myers, Chuhan Chung, Scott D. Patterson, Anne-Sophie Sejling, Anne Minnich, Vipul Baxi, G. Mani Subramaniam, Quentin M. Anstee, Rohit Loomba, Vlad Ratziu, Michael C. Montalto, Nick P. Anderson, Andrew H. Beck, Katy E. Wack","doi":"10.1038/s41591-024-03301-2","DOIUrl":null,"url":null,"abstract":"<p>Metabolic dysfunction-associated steatohepatitis (MASH) is a major cause of liver-related morbidity and mortality, yet treatment options are limited. Manual scoring of liver biopsies, currently the gold standard for clinical trial enrollment and endpoint assessment, suffers from high reader variability. This study represents the most comprehensive multisite analytical and clinical validation of an artificial intelligence (AI)-based pathology system, AI-based measurement of metabolic dysfunction-associated steatohepatitis (AIM-MASH), to assist pathologists in MASH trial histology scoring. AIM-MASH demonstrated high repeatability and reproducibility compared to manual scoring. AIM-MASH-assisted reads by expert MASH pathologists were superior to unassisted reads in accurately assessing inflammation, ballooning, MAS ≥ 4 with ≥1 in each score category and MASH resolution, while maintaining non-inferiority in steatosis and fibrosis assessment. These findings suggest that AIM-MASH could mitigate reader variability, providing a more reliable assessment of therapeutics in MASH clinical trials.</p>","PeriodicalId":58,"journal":{"name":"The Journal of Physical Chemistry ","volume":"16 1","pages":""},"PeriodicalIF":2.7810,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry ","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-024-03301-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic dysfunction-associated steatohepatitis (MASH) is a major cause of liver-related morbidity and mortality, yet treatment options are limited. Manual scoring of liver biopsies, currently the gold standard for clinical trial enrollment and endpoint assessment, suffers from high reader variability. This study represents the most comprehensive multisite analytical and clinical validation of an artificial intelligence (AI)-based pathology system, AI-based measurement of metabolic dysfunction-associated steatohepatitis (AIM-MASH), to assist pathologists in MASH trial histology scoring. AIM-MASH demonstrated high repeatability and reproducibility compared to manual scoring. AIM-MASH-assisted reads by expert MASH pathologists were superior to unassisted reads in accurately assessing inflammation, ballooning, MAS ≥ 4 with ≥1 in each score category and MASH resolution, while maintaining non-inferiority in steatosis and fibrosis assessment. These findings suggest that AIM-MASH could mitigate reader variability, providing a more reliable assessment of therapeutics in MASH clinical trials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能的病理学工具对代谢功能障碍相关脂肪性肝炎评分的临床验证
代谢功能障碍相关性脂肪性肝炎(MASH)是肝脏相关疾病发病率和死亡率的主要原因,但治疗方案却很有限。肝脏活检的人工评分是目前临床试验入组和终点评估的黄金标准,但其读者变异性很高。本研究是对基于人工智能(AI)的病理系统--基于人工智能的代谢功能障碍相关脂肪性肝炎测量(AIM-MASH)--进行的最全面的多点分析和临床验证,以协助病理学家进行MASH试验组织学评分。与人工评分相比,AIM-MASH 具有很高的重复性和再现性。在准确评估炎症、球囊扩张、MAS ≥ 4 且各评分类别≥1 以及 MASH 分辨率方面,MASH 病理专家的 AIM-MASH 辅助读数优于无辅助读数,同时在脂肪变性和纤维化评估方面保持非劣势。这些研究结果表明,AIM-MASH 可以减少阅读器的变异性,为 MASH 临床试验提供更可靠的治疗评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lipid signatures of cardiometabolic risk in children and adolescents with obesity Seven-year performance of a clinical metagenomic next-generation sequencing test for diagnosis of central nervous system infections H5N1 from an infected dairy worker sheds light on viral transmission TRBC1-CAR T cell therapy in peripheral T cell lymphoma: a phase 1/2 trial Moving toward response-adapted trials in oncology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1