Changxi Liu, Lai-Chang Zhang, Kuaishe Wang, Liqiang Wang
{"title":"Improving strength and plasticity via pre-assembled dislocation networks in additively manufactured refractory high entropy alloy","authors":"Changxi Liu, Lai-Chang Zhang, Kuaishe Wang, Liqiang Wang","doi":"10.1016/j.actamat.2024.120526","DOIUrl":null,"url":null,"abstract":"Refractory high entropy alloys (RHEAs), as a novel class of multi-principal element alloys, have attracted significant attention owing to their excellent properties. However, their low plasticity limits their potential applications, while the high melting points of the alloying elements face challenges to additive manufacturing (AM). Herein, RHEA, with extensively distributed cellular structure within their grains, was successfully fabricated using AM. Furthermore, we proposed a simple strategy to form a complete dislocation network within the cellular structure region in advance through cyclic deformation processing in the elastic stage (microplastic deformation). Dislocation networks are entangled with other dislocations, creating numerous pinned points adjacent cell walls, which impede dislocation motion. As a result, the cyclic deformation processing of RHEA achieves a yield strength of 1136 MPa while maintaining 50% deformation strain without fracturing. The cyclic deformation processing method provides a route to strengthen additively manufactured alloys, offering a solution to overcome the trade-off between strength and plasticity.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120526","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Refractory high entropy alloys (RHEAs), as a novel class of multi-principal element alloys, have attracted significant attention owing to their excellent properties. However, their low plasticity limits their potential applications, while the high melting points of the alloying elements face challenges to additive manufacturing (AM). Herein, RHEA, with extensively distributed cellular structure within their grains, was successfully fabricated using AM. Furthermore, we proposed a simple strategy to form a complete dislocation network within the cellular structure region in advance through cyclic deformation processing in the elastic stage (microplastic deformation). Dislocation networks are entangled with other dislocations, creating numerous pinned points adjacent cell walls, which impede dislocation motion. As a result, the cyclic deformation processing of RHEA achieves a yield strength of 1136 MPa while maintaining 50% deformation strain without fracturing. The cyclic deformation processing method provides a route to strengthen additively manufactured alloys, offering a solution to overcome the trade-off between strength and plasticity.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.