The Multifunctional Anaphase Promoting Complex 7 (APC7) Gene Is Associated With Increased Plant Growth and Improved Resistance to DNA and RNA Viruses.

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2024-11-04 DOI:10.1111/pce.15248
Bruna Gino de Araújo-Lopes, Marcos Fernando Basso, Thiago Bretz Carvalho, Patrícia Montessoro, Aline Köhn Carneiro, Aline Cunha da Silva, Marcelo de Freitas Lima, Nubia Barbosa Eloy, Fabio Nascimento da Silva, Flávia Thiebaut, Wallace de Paula Bernado, Eliemar Campostrini, Janice de Almeida Engler, Lygia Santiago-Fernandes, Maria Fatima Grossi-de-Sa, Adriana Silva Hemerly
{"title":"The Multifunctional Anaphase Promoting Complex 7 (APC7) Gene Is Associated With Increased Plant Growth and Improved Resistance to DNA and RNA Viruses.","authors":"Bruna Gino de Araújo-Lopes, Marcos Fernando Basso, Thiago Bretz Carvalho, Patrícia Montessoro, Aline Köhn Carneiro, Aline Cunha da Silva, Marcelo de Freitas Lima, Nubia Barbosa Eloy, Fabio Nascimento da Silva, Flávia Thiebaut, Wallace de Paula Bernado, Eliemar Campostrini, Janice de Almeida Engler, Lygia Santiago-Fernandes, Maria Fatima Grossi-de-Sa, Adriana Silva Hemerly","doi":"10.1111/pce.15248","DOIUrl":null,"url":null,"abstract":"<p><p>The anaphase promoting complex 7 (AtAPC7) is an APC/C subunit expressed in different organs of Arabidopsis thaliana and conserved among eukaryotes. A variant of the complete APC7 protein, containing its C-terminal region (named APC-CT), shows a high homology with a tobacco viral replication inhibitor (IVR-like) protein that reduces plant susceptibility to RNA viruses. Here, the role of the AtAPC7 gene was investigated by characterizing Arabidopsis plants overexpressing the full-length AtAPC7 (APC7<sup>OE</sup>) and the C-terminal portion (APC7-CT<sup>OE</sup>), by phenotypical, physiological and molecular approaches. APC7<sup>OE</sup> plants showed improved growth of vegetative organs, earlier flowering and increased photosynthetic efficiency, CO<sub>2</sub> assimilation and productivity, compared with Col-0 control plants. Conversely, APC7-CT<sup>OE</sup> plants showed reduced susceptibility to both RNA and DNA viruses, along with an improvement in plant growth, although not surpassing APC7<sup>OE</sup> plants. Altogether, the data provide evidence for the role of the AtAPC7 in regulating cell division, expansion and differentiation, accompanied by an increase in photosynthetic capacity, resulting in enhanced plant biomass and seed yield. AtAPC7-CT might reduce growth-defence trade-offs, enabling plants to simultaneously defend themselves while promoting better growth. Our findings highlight the multifunctional role of AtAPC7, unveiling the potential of its orthologous genes as valuable biotechnological tools in important crops.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15248","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The anaphase promoting complex 7 (AtAPC7) is an APC/C subunit expressed in different organs of Arabidopsis thaliana and conserved among eukaryotes. A variant of the complete APC7 protein, containing its C-terminal region (named APC-CT), shows a high homology with a tobacco viral replication inhibitor (IVR-like) protein that reduces plant susceptibility to RNA viruses. Here, the role of the AtAPC7 gene was investigated by characterizing Arabidopsis plants overexpressing the full-length AtAPC7 (APC7OE) and the C-terminal portion (APC7-CTOE), by phenotypical, physiological and molecular approaches. APC7OE plants showed improved growth of vegetative organs, earlier flowering and increased photosynthetic efficiency, CO2 assimilation and productivity, compared with Col-0 control plants. Conversely, APC7-CTOE plants showed reduced susceptibility to both RNA and DNA viruses, along with an improvement in plant growth, although not surpassing APC7OE plants. Altogether, the data provide evidence for the role of the AtAPC7 in regulating cell division, expansion and differentiation, accompanied by an increase in photosynthetic capacity, resulting in enhanced plant biomass and seed yield. AtAPC7-CT might reduce growth-defence trade-offs, enabling plants to simultaneously defend themselves while promoting better growth. Our findings highlight the multifunctional role of AtAPC7, unveiling the potential of its orthologous genes as valuable biotechnological tools in important crops.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多功能无丝分裂促进复合体 7 (APC7) 基因与植物生长速度加快以及对 DNA 和 RNA 病毒的抵抗力增强有关。
无丝分裂促进复合体 7(AtAPC7)是拟南芥不同器官中表达的 APC/C 亚基,在真核生物中具有保守性。完整 APC7 蛋白的一个变体(包含其 C 端区域,命名为 APC-CT)与烟草病毒复制抑制剂(IVR-like)蛋白具有高度同源性,后者可降低植物对 RNA 病毒的敏感性。在此,我们通过表型、生理和分子方法,对过量表达全长 AtAPC7(APC7OE)和 C 端部分(APC7-CTOE)的拟南芥植株进行了表征,从而研究了 AtAPC7 基因的作用。与 Col-0 对照植株相比,APC7OE 植株的无性器官生长得到改善,开花期提前,光合效率、二氧化碳同化和生产率提高。相反,APC7-CTOE 植物对 RNA 和 DNA 病毒的敏感性降低,植物生长也有所改善,但没有超过 APC7OE 植物。总之,这些数据证明了 AtAPC7 在调节细胞分裂、扩展和分化方面的作用,同时还提高了光合能力,从而提高了植物的生物量和种子产量。AtAPC7-CT可能会减少生长-防御之间的权衡,使植物在促进更好生长的同时进行自我防御。我们的研究结果突显了 AtAPC7 的多功能作用,揭示了其同源基因作为重要农作物的宝贵生物技术工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Autophagy Regulates Plant Tolerance to Submergence by Modulating Photosynthesis. Overexpression of Phytoglobin1 in Rice Leads to Enhanced Nitrogen Use Efficiency via Modulation of Nitric Oxide. The Ammonium Transporter SpAMT1;2 Contributes to Nitrogen Utilisation and Cadmium Accumulation in the Hyperaccumulator Sedum Plumbizincicola. Whole-Genome Identification of the Flax Fatty Acid Desaturase Gene Family and Functional Analysis of the LuFAD2.1 Gene Under Cold Stress Conditions. PhNH10 Suppresses Low Temperature Tolerance in Petunia Through the Abscisic Acid-Dependent Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1