Bo Fan, Yongkuan Liu, Rongkun Wen, Lanfen Kong, Xue Wang, Jingxiong Zhang, Jing Li, Yan Qin
{"title":"Mythimna separata herbivory primes Coix resistance in systemic leaves.","authors":"Bo Fan, Yongkuan Liu, Rongkun Wen, Lanfen Kong, Xue Wang, Jingxiong Zhang, Jing Li, Yan Qin","doi":"10.1371/journal.pone.0313015","DOIUrl":null,"url":null,"abstract":"<p><p>Coix lacryma-jobi L. belongs to family Poaceae, is widely cultivated in tropical Asian countries for its nutritional and medicinal values. Coix is often threatened by lepidopteran such as Mythimna separata during its life cycle, resulting in severe yield reduction. Insect feeding can trigger defense signaling and increased defense responses in many other crops, yet little is known about whether simulated armyworm feeding on Coix leaves could induce anti-herbivory responses and whether armyworm feeding could activate priming in systemic leaves. In this study, Mythimna separata simulated herbivory elicited increased jasmonic acid (JA) level, JA-Ile (JA-isoleucine conjugate) and altered transcriptome in the Coix leaves. Meanwhile, M. separata simulated herbivory in local leaves primed the systemic leaves for increased accumulation of jasmonic acid and enhanced resistance to M. separata. Consistently, transcriptome analysis showed the systemic leaves were primed, which were up- or down-regulated comparing with the non-primed systemic leaves. In this study, we first reported Mythimna separata simulated herbivory induced increased defense response in leaves of Coix, also Mythimna separata herbivory primed Coix resistance in systemic leaves. This study provides new insight into the regulation of defense responses of Coix against M. separata and the ecological function of priming in Coix.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0313015","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Coix lacryma-jobi L. belongs to family Poaceae, is widely cultivated in tropical Asian countries for its nutritional and medicinal values. Coix is often threatened by lepidopteran such as Mythimna separata during its life cycle, resulting in severe yield reduction. Insect feeding can trigger defense signaling and increased defense responses in many other crops, yet little is known about whether simulated armyworm feeding on Coix leaves could induce anti-herbivory responses and whether armyworm feeding could activate priming in systemic leaves. In this study, Mythimna separata simulated herbivory elicited increased jasmonic acid (JA) level, JA-Ile (JA-isoleucine conjugate) and altered transcriptome in the Coix leaves. Meanwhile, M. separata simulated herbivory in local leaves primed the systemic leaves for increased accumulation of jasmonic acid and enhanced resistance to M. separata. Consistently, transcriptome analysis showed the systemic leaves were primed, which were up- or down-regulated comparing with the non-primed systemic leaves. In this study, we first reported Mythimna separata simulated herbivory induced increased defense response in leaves of Coix, also Mythimna separata herbivory primed Coix resistance in systemic leaves. This study provides new insight into the regulation of defense responses of Coix against M. separata and the ecological function of priming in Coix.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage