The role of bacterial extracellular vesicles in promoting antibiotic resistance.

IF 6 2区 生物学 Q1 MICROBIOLOGY Critical Reviews in Microbiology Pub Date : 2024-11-04 DOI:10.1080/1040841X.2024.2423159
Shaoqi Qu, Yanfang Zhang, Liangyun Weng, Xinxin Shan, Ping Cheng, Qian Li, Lin Li
{"title":"The role of bacterial extracellular vesicles in promoting antibiotic resistance.","authors":"Shaoqi Qu, Yanfang Zhang, Liangyun Weng, Xinxin Shan, Ping Cheng, Qian Li, Lin Li","doi":"10.1080/1040841X.2024.2423159","DOIUrl":null,"url":null,"abstract":"<p><p>The burgeoning proliferation of infections attributed to multidrug-resistant (MDR) bacterial pathogens is profoundly undermining conventional chemotherapeutic modalities, portending a grave menace to global public health. The propagation of drug resistance among bacteria is fundamentally facilitated by bacterial interactions, with extracellular vesicles (EVs) assuming a critical role in interbacterial communication. Here, we briefly delineate the methodologies for isolation, extraction, and characterization of EVs from both Gram-negative and Gram-positive bacterial origins. We further investigate assorted methodologies to augment EV production, embracing physical stimulation, chemical elicitation, and genetic engineering. Moreover, we expound on the pivotal involvement of EVs in the facilitation of bacterial drug resistance proliferation and anticipate future trajectories of research and application potential. This overview of EV-mediated novel mechanisms of horizontal gene transfer implicated in antibiotic resistance among bacteria aims to obstruct the transmission conduits of bacterial drug resistance and thus fortify public health integrity.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-18"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/1040841X.2024.2423159","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The burgeoning proliferation of infections attributed to multidrug-resistant (MDR) bacterial pathogens is profoundly undermining conventional chemotherapeutic modalities, portending a grave menace to global public health. The propagation of drug resistance among bacteria is fundamentally facilitated by bacterial interactions, with extracellular vesicles (EVs) assuming a critical role in interbacterial communication. Here, we briefly delineate the methodologies for isolation, extraction, and characterization of EVs from both Gram-negative and Gram-positive bacterial origins. We further investigate assorted methodologies to augment EV production, embracing physical stimulation, chemical elicitation, and genetic engineering. Moreover, we expound on the pivotal involvement of EVs in the facilitation of bacterial drug resistance proliferation and anticipate future trajectories of research and application potential. This overview of EV-mediated novel mechanisms of horizontal gene transfer implicated in antibiotic resistance among bacteria aims to obstruct the transmission conduits of bacterial drug resistance and thus fortify public health integrity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌胞外囊泡在促进抗生素耐药性方面的作用。
耐多药(MDR)细菌病原体引起的感染急剧增加,严重破坏了传统的化疗方法,对全球公共卫生构成严重威胁。细菌之间的相互作用从根本上促进了耐药性的传播,而细胞外囊泡 (EV) 在细菌间的交流中发挥着关键作用。在此,我们简要介绍了从革兰氏阴性和革兰氏阳性细菌中分离、提取和表征 EVs 的方法。我们还进一步研究了增强 EV 生产的各种方法,包括物理刺激、化学诱导和基因工程。此外,我们还阐述了 EV 在促进细菌耐药性扩散方面的关键作用,并预测了未来的研究轨迹和应用潜力。本文概述了由 EV 介导的、与细菌抗生素耐药性有关的新型水平基因转移机制,旨在阻断细菌耐药性的传播渠道,从而加强公共卫生的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Microbiology
Critical Reviews in Microbiology 生物-微生物学
CiteScore
14.70
自引率
0.00%
发文量
99
期刊介绍: Critical Reviews in Microbiology is an international, peer-reviewed journal that publishes comprehensive reviews covering all areas of microbiology relevant to humans and animals, including medical and veterinary microbiology, public health and environmental microbiology. These may include subjects related to microbial molecular biology, immunopathogenicity, physiology, biochemistry, structure, and epidemiology. Of particular interest are reviews covering clinical aspects of bacterial, virological, fungal and parasitic diseases. All reviews must be analytical, comprehensive, and balanced in nature. Editors welcome uninvited submissions, as well as suggested topics for reviews accompanied by an abstract.
期刊最新文献
Peeling off the layers from microbial dark matter (MDM): recent advances, future challenges, and opportunities. Current developments and prospects of the antibiotic delivery systems. Vibrio cholerae virulence and its suppression through the quorum-sensing system. Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. Evaluation of the antifungal effect of plant extracts on oral Candida spp. - a critical methodological analysis of the last decade.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1