{"title":"TM4SF4 is a diagnostic biomarker accelerating progression of papillary thyroid cancer via AKT pathway.","authors":"Lizhi Lin, Jialiang Wen, Tiansheng Xu, Yuhao Si","doi":"10.1080/15384047.2024.2424570","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of papillary thyroid cancer (PTC) has been steadily rising, though the underlying mechanism remains unclear. This study aims to elucidate the biological role of TM4SF4 in the PTC progression. Our differential expression analysis indicated that TM4SF4 was significantly upregulated in PTC, which was corroborated in both our local cohort and the data from Human Protein Atlas. Additionally, clinical characteristics analysis and receiver operating characteristic curves (ROC) demonstrated that TM4SF4 served as a significant diagnostic marker for PTC. Correlation and enrichment analysis of TM4SF4-related partners suggested that it was involved in cell junction and cohesion processes. Furthermore, immune infiltration analysis revealed a positive correlation between TM4SF4 expression and the immune activation in PTC. Importantly, <i>in vitro</i> experiments demonstrated that TM4SF4 downregulation suppressed the proliferation and metastasis of PTC cell lines while inducing apoptosis. We further discovered that the AKT activator SC79 was able to reverse the malignant behaviors suppression caused by TM4SF4 knockdown, suggesting that TM4SF4 may promote PTC progression via the AKT pathway. In conclusion, our study highlights the oncogenic role of TM4SF4 in PTC and identifies it as a novel biomarker for diagnosis and treatment.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2424570"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2424570","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The incidence of papillary thyroid cancer (PTC) has been steadily rising, though the underlying mechanism remains unclear. This study aims to elucidate the biological role of TM4SF4 in the PTC progression. Our differential expression analysis indicated that TM4SF4 was significantly upregulated in PTC, which was corroborated in both our local cohort and the data from Human Protein Atlas. Additionally, clinical characteristics analysis and receiver operating characteristic curves (ROC) demonstrated that TM4SF4 served as a significant diagnostic marker for PTC. Correlation and enrichment analysis of TM4SF4-related partners suggested that it was involved in cell junction and cohesion processes. Furthermore, immune infiltration analysis revealed a positive correlation between TM4SF4 expression and the immune activation in PTC. Importantly, in vitro experiments demonstrated that TM4SF4 downregulation suppressed the proliferation and metastasis of PTC cell lines while inducing apoptosis. We further discovered that the AKT activator SC79 was able to reverse the malignant behaviors suppression caused by TM4SF4 knockdown, suggesting that TM4SF4 may promote PTC progression via the AKT pathway. In conclusion, our study highlights the oncogenic role of TM4SF4 in PTC and identifies it as a novel biomarker for diagnosis and treatment.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.