Phytochemical Profiling and Anti-VanA Activity of Pulegone Extracted from Ziziphora tenuior Flower Against Vancomycin-Resistant Enterococci: an In Silico Approach.

IF 2.3 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemistry & Biodiversity Pub Date : 2024-11-04 DOI:10.1002/cbdv.202401536
Asma Hatami, Marzieh Paeizi, Majid M M Sadeghi
{"title":"Phytochemical Profiling and Anti-VanA Activity of Pulegone Extracted from Ziziphora tenuior Flower Against Vancomycin-Resistant Enterococci: an In Silico Approach.","authors":"Asma Hatami, Marzieh Paeizi, Majid M M Sadeghi","doi":"10.1002/cbdv.202401536","DOIUrl":null,"url":null,"abstract":"<p><p>Ziziphora tenuior is a herb known for its potent pharmaceutical activities. However, the specific compounds of the flowers of this herb have not been fully studied yet. This study used GC-MS to conduct a chemical analysis of the methanol and dichloromethane extracts of Z. tenuior flowers. Additionally, it sought to assess the potential antibacterial activity of the extracts against vancomycin-resistant enterococci (VRE) bacteria by predicting the interactions between one of the most prevalent compounds in the extracts and the D-alanyl-D-lactate ligase (VanA) protein, which is responsible for enterococci resistant to vancomycin. The results revealed a total of 15 compounds in the methanolic extract and 12 compounds in the dichloromethane extract. Among these, 5-methyl-2-(1-methylethylidene)-cyclohexanone, also known as pulegone, constituting 52.6 % of the methanolic extract and 34.6 % of the dichloromethane extract, was the most abundant compound in the extracts. Furthermore, the in-silico analysis demonstrated that pulegone exhibited significant interactions with VanA, as indicated by docking energy values of -7 kcal/mol and the formation of one hydrogen bond. The study suggests that pulegone shows promise as an antibacterial agent against VRE by potentially interacting with VanA protein and serving as a key inhibitor in fighting vancomycin resistance.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202401536","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ziziphora tenuior is a herb known for its potent pharmaceutical activities. However, the specific compounds of the flowers of this herb have not been fully studied yet. This study used GC-MS to conduct a chemical analysis of the methanol and dichloromethane extracts of Z. tenuior flowers. Additionally, it sought to assess the potential antibacterial activity of the extracts against vancomycin-resistant enterococci (VRE) bacteria by predicting the interactions between one of the most prevalent compounds in the extracts and the D-alanyl-D-lactate ligase (VanA) protein, which is responsible for enterococci resistant to vancomycin. The results revealed a total of 15 compounds in the methanolic extract and 12 compounds in the dichloromethane extract. Among these, 5-methyl-2-(1-methylethylidene)-cyclohexanone, also known as pulegone, constituting 52.6 % of the methanolic extract and 34.6 % of the dichloromethane extract, was the most abundant compound in the extracts. Furthermore, the in-silico analysis demonstrated that pulegone exhibited significant interactions with VanA, as indicated by docking energy values of -7 kcal/mol and the formation of one hydrogen bond. The study suggests that pulegone shows promise as an antibacterial agent against VRE by potentially interacting with VanA protein and serving as a key inhibitor in fighting vancomycin resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从天竺葵花中提取的 Pulegone 针对耐万古霉素肠球菌的植物化学成分分析和抗 VanA 活性:一种硅学方法。
Ziziphora tenuior 是一种以其强大的药用活性而闻名的草药。然而,人们尚未对这种草药花的特定化合物进行充分研究。本研究使用气相色谱-质谱对 Z. tenuior 花的甲醇和二氯甲烷提取物进行了化学分析。此外,研究还试图通过预测萃取物中最常见的一种化合物与 D-丙氨酰-D-乳酸连接酶(VanA)蛋白之间的相互作用,评估萃取物对耐万古霉素肠球菌(VRE)的潜在抗菌活性。结果显示,甲醇提取物中含有 15 种化合物,二氯甲烷提取物中含有 12 种化合物。其中,5-甲基-2-(1-甲基亚乙基)-环己酮(又称 pulegone)是提取物中含量最高的化合物,占甲醇提取物的 52.6%,占二氯甲烷提取物的 34.6%。此外,室内分析表明,pulegone 与 VanA 有明显的相互作用,对接能值为 -7 kcal/mol,并形成了一个氢键。这项研究表明,pulegone 有可能与 VanA 蛋白相互作用,成为对抗万古霉素耐药性的关键抑制剂,从而有望成为一种抗 VRE 的抗菌剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry & Biodiversity
Chemistry & Biodiversity 环境科学-化学综合
CiteScore
3.40
自引率
10.30%
发文量
475
审稿时长
2.6 months
期刊介绍: Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level. Since 2017, Chemistry & Biodiversity is published in an online-only format.
期刊最新文献
Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Revealed the Molecular Targets and Potential Mechanism of Nauclea Latifolia in the Treatment of Breast Cancer. Identification of New Compounds from the Roots of Rubia tibetica Hook. f. Minor Lignans with Inhibitory Activity against LPS-induced NO Production from Schisandra chinensis. Unraveling Water-Soluble Constituents of Basil (Ocimum basilicum L.) in Relation to Their Toxicity and Anti-Typhoidal Activity in Mouse Models. Evaluation of Dermal Wound Healing Potential: Phytochemical Characterization, Anti-inflammatory, Antioxidant, and Antimicrobial Activities of Euphorbia guyoniana Boiss. & Reut. Latex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1