Himel Nahreen Khaleque, Homayoun Fathollahzadeh, Anna H Kaksonen, Jorge Valdés, Eva Vergara, David S Holmes, Elizabeth L J Watkin
{"title":"Genomic insights into key mechanisms for carbon, nitrogen, and phosphate assimilation by the acidophilic, halotolerant genus Acidihalobacter members.","authors":"Himel Nahreen Khaleque, Homayoun Fathollahzadeh, Anna H Kaksonen, Jorge Valdés, Eva Vergara, David S Holmes, Elizabeth L J Watkin","doi":"10.1093/femsec/fiae145","DOIUrl":null,"url":null,"abstract":"<p><p>In-depth comparative genomic analysis was conducted to predict carbon, nitrogen, and phosphate assimilation pathways in the halotolerant, acidophilic genus Acidihalobacter. The study primarily aimed to understand how the metabolic capabilities of each species can determine their roles and effects on the microbial ecology of their unique saline and acidic environments, as well as in their potential application to saline water bioleaching systems. All four genomes encoded the genes for the complete tricarboxylic acid cycle, including 2-oxoglutarate dehydrogenase, a key enzyme absent in obligate chemolithotrophic acidophiles. Genes for a unique carboxysome shell protein, csoS1D, typically found in halotolerant bacteria but not in acidophiles, were identified. All genomes contained lactate and malate utilization genes, but only Ac. ferrooxydans DSM 14175T contained genes for the metabolism of propionate. Genes for phosphate assimilation were present, though organized differently across species. Only Ac. prosperus DSM 5130T and Ac. aeolianus DSM 14174T genomes contained nitrogen fixation genes, while Ac. ferrooxydans DSM 14175T and Ac. yilgarnensis DSM 105917T possessed genes for urease transporters and respiratory nitrate reductases, respectively. The findings suggest that all species can fix carbon dioxide but can also potentially utilize exogenous carbon sources and that the non-nitrogen-fixing species rely on alternative nitrogen assimilation mechanisms.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae145","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In-depth comparative genomic analysis was conducted to predict carbon, nitrogen, and phosphate assimilation pathways in the halotolerant, acidophilic genus Acidihalobacter. The study primarily aimed to understand how the metabolic capabilities of each species can determine their roles and effects on the microbial ecology of their unique saline and acidic environments, as well as in their potential application to saline water bioleaching systems. All four genomes encoded the genes for the complete tricarboxylic acid cycle, including 2-oxoglutarate dehydrogenase, a key enzyme absent in obligate chemolithotrophic acidophiles. Genes for a unique carboxysome shell protein, csoS1D, typically found in halotolerant bacteria but not in acidophiles, were identified. All genomes contained lactate and malate utilization genes, but only Ac. ferrooxydans DSM 14175T contained genes for the metabolism of propionate. Genes for phosphate assimilation were present, though organized differently across species. Only Ac. prosperus DSM 5130T and Ac. aeolianus DSM 14174T genomes contained nitrogen fixation genes, while Ac. ferrooxydans DSM 14175T and Ac. yilgarnensis DSM 105917T possessed genes for urease transporters and respiratory nitrate reductases, respectively. The findings suggest that all species can fix carbon dioxide but can also potentially utilize exogenous carbon sources and that the non-nitrogen-fixing species rely on alternative nitrogen assimilation mechanisms.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms