Utility of under-sampled scans with iterative reconstruction and high-frequency preserving transform for high spatial resolution magnetic resonance cholangiopancreatography.
{"title":"Utility of under-sampled scans with iterative reconstruction and high-frequency preserving transform for high spatial resolution magnetic resonance cholangiopancreatography.","authors":"Shota Kondo, Yuko Nakamura, Toru Higaki, Takashi Nishihara, Masahiro Takizawa, Toru Shirai, Motoshi Fujimori, Yoshitaka Bito, Keigo Narita, Dara Fonseca, Shogo Maeda, Ikuo Kawashita, Yukiko Honda, Kazuo Awai","doi":"10.1007/s11604-024-01688-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Under-sampled scans with iterative reconstruction and high-frequency preserving transform (Us-IRHF) can increase the acquisition speed without degrading the image quality by recovering image information from under-sampled data. We investigate the clinical applicability of high spatial resolution magnetic resonance cholangiopancreatography (MRCP) images without extending the scanning time using Us-IRHF.</p><p><strong>Methods: </strong>A slit phantom was scanned with conventional- (without Us-IRHF), Us-IR- (without HF), and Us-IRHF scanning. The matrix size was 320 × 320 for Us-IR- and Us-IRHF- and 288 × 208 for conventional scanning. Modulation transfer function (MTF) focused on the 1.0 lp/cm gauge for each scanning was calculated. For clinical study we acquired respiratory-triggered 3D MRCP scans with and without Us-IRHF (U<sup>+</sup>-, U<sup>-</sup>MRCP) in 41 patients. The matrix size was 320 × 320 for U<sup>+</sup>- and 288 × 208 for U<sup>-</sup>MRCP. The acquisition time and the relative duct-to-periductal contrast ratios (RCs) for the right- and left intrahepatic bile-, the common bile-, and the main pancreatic duct were recorded. Visualization of each duct and overall image quality was scored on 5-point confidence scales. For visualization of each duct the score ranged from 1 (not visible) to 5 (visible with excellent details), for the image quality, it ranged from 1 (undiagnostic) to 5 (excellent). Superiority for the qualitative visualization score and non-inferiority for the RC values with prespecified margins were assessed.</p><p><strong>Results: </strong>Phantom study showed that compared to the conventional- and Us-IR (without HF) images, the MTF for the Us-IRHF image revealed the highest response. For clinical study, the mean acquisition time was 161 s for U<sup>+</sup>- and 165 s for U<sup>-</sup>MRCP. For all ducts, the RC value of U<sup>+</sup>MRCP was non-inferior to U<sup>-</sup>MRCP and the qualitative visualization score assigned to U<sup>+</sup>MRCP was superior to U<sup>-</sup>MRCP.</p><p><strong>Conclusion: </strong>Us-IRHF improved the image quality of high spatial resolution MRCP without extending the scanning time.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":"463-471"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-024-01688-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Under-sampled scans with iterative reconstruction and high-frequency preserving transform (Us-IRHF) can increase the acquisition speed without degrading the image quality by recovering image information from under-sampled data. We investigate the clinical applicability of high spatial resolution magnetic resonance cholangiopancreatography (MRCP) images without extending the scanning time using Us-IRHF.
Methods: A slit phantom was scanned with conventional- (without Us-IRHF), Us-IR- (without HF), and Us-IRHF scanning. The matrix size was 320 × 320 for Us-IR- and Us-IRHF- and 288 × 208 for conventional scanning. Modulation transfer function (MTF) focused on the 1.0 lp/cm gauge for each scanning was calculated. For clinical study we acquired respiratory-triggered 3D MRCP scans with and without Us-IRHF (U+-, U-MRCP) in 41 patients. The matrix size was 320 × 320 for U+- and 288 × 208 for U-MRCP. The acquisition time and the relative duct-to-periductal contrast ratios (RCs) for the right- and left intrahepatic bile-, the common bile-, and the main pancreatic duct were recorded. Visualization of each duct and overall image quality was scored on 5-point confidence scales. For visualization of each duct the score ranged from 1 (not visible) to 5 (visible with excellent details), for the image quality, it ranged from 1 (undiagnostic) to 5 (excellent). Superiority for the qualitative visualization score and non-inferiority for the RC values with prespecified margins were assessed.
Results: Phantom study showed that compared to the conventional- and Us-IR (without HF) images, the MTF for the Us-IRHF image revealed the highest response. For clinical study, the mean acquisition time was 161 s for U+- and 165 s for U-MRCP. For all ducts, the RC value of U+MRCP was non-inferior to U-MRCP and the qualitative visualization score assigned to U+MRCP was superior to U-MRCP.
Conclusion: Us-IRHF improved the image quality of high spatial resolution MRCP without extending the scanning time.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.