Ailish M. Graham, Dominick V. Spracklen, James B. McQuaid, Thomas E. L. Smith, Hanun Nurrahmawati, Devina Ayona, Hasyim Mulawarman, Chaidir Adam, Effie Papargyropoulou, Richard Rigby, Rory Padfield, Shofwan Choiruzzad
{"title":"Updated Smoke Exposure Estimate for Indonesian Peatland Fires Using a Network of Low-Cost PM2.5 Sensors and a Regional Air Quality Model","authors":"Ailish M. Graham, Dominick V. Spracklen, James B. McQuaid, Thomas E. L. Smith, Hanun Nurrahmawati, Devina Ayona, Hasyim Mulawarman, Chaidir Adam, Effie Papargyropoulou, Richard Rigby, Rory Padfield, Shofwan Choiruzzad","doi":"10.1029/2024GH001125","DOIUrl":null,"url":null,"abstract":"<p>Indonesia accounts for more than one third of the world's tropical peatlands. Much of the peatland in Indonesia has been deforested and drained, meaning it is more susceptible to fires, especially during drought and El Niño events. Fires are most common in Riau (Sumatra) and Central Kalimantan (Borneo) and lead to poor regional air quality. Measurements of air pollutant concentrations are sparse in both regions contributing to large uncertainties in both fire emissions and air quality degradation. We deployed a network of 13 low-cost PM<sub>2.5</sub> sensors across urban and rural locations in Central Kalimantan and measured indoor and outdoor PM<sub>2.5</sub> concentrations during the onset of an El Niño dry season in 2023. During the dry season (September 1st to October 31st), mean outdoor PM<sub>2.5</sub> concentrations were 136 μg m<sup>−3</sup>, with fires contributing 90 μg m<sup>−3</sup> to concentrations. Median indoor/outdoor (I/O) ratios were 1.01 in rural areas, considerably higher than those reported during wildfires in other regions of the world (e.g., USA), indicating housing stock in the region provides little protection from outdoor PM<sub>2.5.</sub> We combined WRF-Chem simulated PM<sub>2.5</sub> concentrations with the median fire-derived I/O ratio and questionnaire results pertaining to participants' time spent I/O to estimate 1.62 million people in Central Kalimantan were exposed to unhealthy, very unhealthy and dangerous air quality (>55.4 μg m<sup>−3</sup>) during the dry season. Our work provides new information on the exposure of people in Central Kalimantan to smoke from fires and highlights the need for action to help reduce peatland fires.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 11","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GH001125","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Indonesia accounts for more than one third of the world's tropical peatlands. Much of the peatland in Indonesia has been deforested and drained, meaning it is more susceptible to fires, especially during drought and El Niño events. Fires are most common in Riau (Sumatra) and Central Kalimantan (Borneo) and lead to poor regional air quality. Measurements of air pollutant concentrations are sparse in both regions contributing to large uncertainties in both fire emissions and air quality degradation. We deployed a network of 13 low-cost PM2.5 sensors across urban and rural locations in Central Kalimantan and measured indoor and outdoor PM2.5 concentrations during the onset of an El Niño dry season in 2023. During the dry season (September 1st to October 31st), mean outdoor PM2.5 concentrations were 136 μg m−3, with fires contributing 90 μg m−3 to concentrations. Median indoor/outdoor (I/O) ratios were 1.01 in rural areas, considerably higher than those reported during wildfires in other regions of the world (e.g., USA), indicating housing stock in the region provides little protection from outdoor PM2.5. We combined WRF-Chem simulated PM2.5 concentrations with the median fire-derived I/O ratio and questionnaire results pertaining to participants' time spent I/O to estimate 1.62 million people in Central Kalimantan were exposed to unhealthy, very unhealthy and dangerous air quality (>55.4 μg m−3) during the dry season. Our work provides new information on the exposure of people in Central Kalimantan to smoke from fires and highlights the need for action to help reduce peatland fires.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.