PeiChi Liao, Haichang Guo*, Hongyu Niu, Ruijie Li, Ge Yin, Lei Kang, Liuchen Ren, Ruicong Lv, Huifeng Tian, Shizhuo Liu, Zhixin Yao, Zhenjiang Li, Yihan Wang, Lina Yang Zhang, U Sasaki, Wenxi Li, Yijie Luo, Junjie Guo, Zhi Xu, Lifen Wang, Ruqiang Zou, Shulin Bai and Lei Liu*,
{"title":"Core–Shell Engineered Fillers Overcome the Electrical-Thermal Conductance Trade-Off","authors":"PeiChi Liao, Haichang Guo*, Hongyu Niu, Ruijie Li, Ge Yin, Lei Kang, Liuchen Ren, Ruicong Lv, Huifeng Tian, Shizhuo Liu, Zhixin Yao, Zhenjiang Li, Yihan Wang, Lina Yang Zhang, U Sasaki, Wenxi Li, Yijie Luo, Junjie Guo, Zhi Xu, Lifen Wang, Ruqiang Zou, Shulin Bai and Lei Liu*, ","doi":"10.1021/acsnano.4c0934610.1021/acsnano.4c09346","DOIUrl":null,"url":null,"abstract":"<p >The rapid development of modern electronic devices increasingly requires thermal management materials with controllable electrical properties, ranging from conductive and dielectric to insulating, to meet the needs of diverse applications. However, highly thermally conductive materials usually have a high electrical conductivity. Intrinsically highly thermally conductive, but electrically insulating materials are still limited to a few kinds of materials. To overcome the electrical-thermal conductance trade-off, here, we report a facile Pechini-based method to prepare multiple core (metal)/shell (metal oxide) engineered fillers, such as aluminum-oxide-coated and beryllium-oxide-coated Ag microspheres. In contrast to the previous <i>in situ</i> growth method which mainly focused on small-sized spheres with specific coating materials, our method combined with ultrafast joule heating treatment is more versatile and robust for varied-sized, especially large-sized core–shell fillers. Through size compounding, the as-synthesized core–shell-filled epoxy composites exhibit high isotropic thermal conductivity (∼3.8 W m<sup>–1</sup> K<sup>–1</sup>) while maintaining high electrical resistivity (∼10<sup>12</sup> Ω cm) and good flowability, showing better heat dissipation properties than commercial thermally conductive packaging materials. The successful preparation of these core–shell fillers endows thermally conductive composites with controlled electrical properties for emerging electronic package applications, as demonstrated in circuit board and battery thermal management.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 44","pages":"30593–30604 30593–30604"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c09346","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of modern electronic devices increasingly requires thermal management materials with controllable electrical properties, ranging from conductive and dielectric to insulating, to meet the needs of diverse applications. However, highly thermally conductive materials usually have a high electrical conductivity. Intrinsically highly thermally conductive, but electrically insulating materials are still limited to a few kinds of materials. To overcome the electrical-thermal conductance trade-off, here, we report a facile Pechini-based method to prepare multiple core (metal)/shell (metal oxide) engineered fillers, such as aluminum-oxide-coated and beryllium-oxide-coated Ag microspheres. In contrast to the previous in situ growth method which mainly focused on small-sized spheres with specific coating materials, our method combined with ultrafast joule heating treatment is more versatile and robust for varied-sized, especially large-sized core–shell fillers. Through size compounding, the as-synthesized core–shell-filled epoxy composites exhibit high isotropic thermal conductivity (∼3.8 W m–1 K–1) while maintaining high electrical resistivity (∼1012 Ω cm) and good flowability, showing better heat dissipation properties than commercial thermally conductive packaging materials. The successful preparation of these core–shell fillers endows thermally conductive composites with controlled electrical properties for emerging electronic package applications, as demonstrated in circuit board and battery thermal management.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.