{"title":"Recent advancements in selenium nanoconstructs as a potential carrier in cancer therapy","authors":"","doi":"10.1016/j.nanoso.2024.101399","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer cells require energy to carry out essential tasks, grow, and survive, like all other body cells. The pathophysiological process of cancer is a complex one. The cytotoxicity, lack of selectivity, generation of multidrug resistance, and proliferation of stem-like cells are some of the issues facing current chemotherapy. To this end, nanoconstructs with unique inherent properties, including optical, magnetic, and electrical, with a desired nano range (<100 nm), have shown remarkable applications. There are numerous significant categories into which nanomaterials employed in cancer therapy can be divided. These nanomaterials, which target the immune system, tumour microenvironment, and cancer cells, have been modified for various cancer therapies to improve drug capacity and bioavailability, reduce toxicity, and improve specificity. The distinct bioactivities of inorganic metallic NPs include silver (Ag), gold (Au), cerium (Ce), iron (Fe), selenium (Se), titanium (Ti), platinum (Pt) and zinc (Zn), giving them a prominent position among other NPs. Selenium nanoparticles (SeNPs), particularly, have garnered attention due to their unique pharmacological properties. As an essential trace element, Se forms the active site in selenoproteins like selenocysteine (Sec), which regulates the physiological redox balance through its oxidoreductase activity. SeNPs have emerged as promising therapeutic agents in recent decades due to their reduced toxicity compared to Se, which has a narrow therapeutic window. SeNPs also exhibit synergistic effects with the therapeutic cargo, enhancing the anticancer activity. In this review, we have discussed the pharmacological effects of SeNPs, their pharmacological protective role against inflammation and oxidative stress-mediated conditions, and the latest advances in their synthesis and functionalization, utilized in cancer medication delivery systems, targeted drug delivery systems and gene delivery systems. In addition, we present an update on the most recent reported preclinical research involving the utilization of SeNPs in cancer treatment.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.4500,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer cells require energy to carry out essential tasks, grow, and survive, like all other body cells. The pathophysiological process of cancer is a complex one. The cytotoxicity, lack of selectivity, generation of multidrug resistance, and proliferation of stem-like cells are some of the issues facing current chemotherapy. To this end, nanoconstructs with unique inherent properties, including optical, magnetic, and electrical, with a desired nano range (<100 nm), have shown remarkable applications. There are numerous significant categories into which nanomaterials employed in cancer therapy can be divided. These nanomaterials, which target the immune system, tumour microenvironment, and cancer cells, have been modified for various cancer therapies to improve drug capacity and bioavailability, reduce toxicity, and improve specificity. The distinct bioactivities of inorganic metallic NPs include silver (Ag), gold (Au), cerium (Ce), iron (Fe), selenium (Se), titanium (Ti), platinum (Pt) and zinc (Zn), giving them a prominent position among other NPs. Selenium nanoparticles (SeNPs), particularly, have garnered attention due to their unique pharmacological properties. As an essential trace element, Se forms the active site in selenoproteins like selenocysteine (Sec), which regulates the physiological redox balance through its oxidoreductase activity. SeNPs have emerged as promising therapeutic agents in recent decades due to their reduced toxicity compared to Se, which has a narrow therapeutic window. SeNPs also exhibit synergistic effects with the therapeutic cargo, enhancing the anticancer activity. In this review, we have discussed the pharmacological effects of SeNPs, their pharmacological protective role against inflammation and oxidative stress-mediated conditions, and the latest advances in their synthesis and functionalization, utilized in cancer medication delivery systems, targeted drug delivery systems and gene delivery systems. In addition, we present an update on the most recent reported preclinical research involving the utilization of SeNPs in cancer treatment.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .